Basic Guide HITACHI SJ Series Inverter

Read this "Basic Guide", and keep it handy for future reference.

HItachis Series Inverter


```
Introduction
```


Contents

Chapter 1: Safety Instructions

Chapter 2:	Installation and Wiring
Chapter 3:	Operation Setting and Examples of I/O Adjustment

Chapter 4: Settings

Chapter 5: FAQ / Troubleshooting

Chapter 6: Inspection and Maintenance
Chapter 7: Specifications

Appendix

Index

If you have any inquiry or problem,
Refer to Chapter 5 FAQ/Troubleshooting or
Contact to the Technical Inquiry Service for Inverter.

When making a contact, inform the reference number on below.

NT2511DX

S. 1 Introduction

Thank you for purchasing Hitachi SJ Series P1 Inverter. This is a guide that describes the basic handling and maintenance of the SJ Series P1 inverter. (Afterward "Hitachi SJ Series P1 Inverter" referred as SJ-P1.)

For the purpose of reduction paper consumption and provision of the latest information, we enclose the Basic Guide only, while providing the User's Guide for more detailed description through electronic means instead of CD or a printed document.

About the Basic Guide (this document)
The Basic Guide provides the minimum information necessary for handling the product. Make sure to read this document as well as the User's Guide for more detailed information.

- About the User's Guide

The User's Guide provides detailed information necessary for handling the product. Make sure to read the User's Guide for proper use.
If future updated descriptions differ from the Basic Guide, the description in the User's Guide will have higher priority. Always use the SJ-P1 strictly within the range described in the User's Guide and perform proper inspection and maintenance to prevent failures or accidents.
The latest version of the User's Guide, Please contact the supplier where this device was purchased.

■ Handling an optional products
If you use the inverter with optional products, you should also read the instruction enclosed in those products.

S. 2 Cautions

For a proper use
Before using the inverter, carefully read the Basic Guide, User's Guide of inverter and the instruction manuals for optional products.
In addition, any personnel handling or performing maintenance of the product must read carefully the inverter's Basic Guide, User's Guide and each optional products instruction manuals.

Before any attempt to install, operate, maintain or inspect this equipment, a complete understanding of the equipment specifications, safety instructions, precautions, handling and operation instructions is required. Follow all the specifications and instructions for a proper use. Additionally, review the inverter's Basic Guide, User's Guide and each optional product instruction manuals periodically.

Precautions

It is prohibited to reproduce or reform this document partially or totally in any form without the publisher's permission.
The contents of the document are subject to change without prior notice.
Any handling, maintenance or operation method NOT described on the inverter's Basic Guide, User's Guide and each optional product instruction manuals is not covered by the product warranty. DO NOT performs any procedure NOT described on the SJ-P1 and optional product guides since it can be the cause of unexpected failures or accidents.
We are not responsible for any impact from operations regardless of unexpected failure or accident due to operation or handling of the product in a manner not specified on the inverter's Basic Guide, User's Guide and each optional product instruction manuals. We appreciate your understanding.
If you find any unclear or incorrect description, missing description, or misplaced or missing pages, please inform to Hitachi inverter technical service office.

Note that, in case the inverter's Basic Guide, User's Guide and each optional product instruction manuals are enclosed, they should be delivered to the end user of the inverter. Also make sure to download and keep accessible any other related guides or instruction for the end user.

S. 3 Product Warranty and Inquiry

- About Product Inquiry

- For an inquiry about product damage or faults or a question about the product, notify your supplier or Hitachi inverter technical service office.
When contacting the technical service, provide the following information.

■ Model: P1 followed by model code in specification label.
■ Manufacturer Number (MFG No.): It shows in specification label.
■ Date of purchase: Purchase date by customer.

- Inquiry contents:
- Inform us the defective point and its condition.
- Inform us the suspicious content and its detail.

- Product Warranty

- The product SJ-P1 will be warranted by Hitachi Industrial Equipment Systems Co., Ltd. (afterwards referred as "Hitachi") during the warranty period from your date of purchase only under proper usage of product.
- However, the warranty expressed here is covered only for products delivered from Hitachi, and will not be responsible for others damage or loss of products like a motor or any equipment or systems damage caused by improper usage of the product. We recommend applying safety design which is able to provide a hazard notice to the user in case of malfunction or damage of the delivered product to minimize the consequences on other equipment or system. We advise that the selection of the delivered product is done with sufficient margin for performance, as well as using redundant design for other equipment or systems. Also, the compatibility of the product with the customer's intended use is not warranted, hence the customer has the responsibility to perform validation tests before any operation.
- In case a defective product is delivered, or quality failure during the manufacturing process are detected, Hitachi will repair or exchange the product free of charge, only during the product warranty period (afterward, we call "warranty service").
- The product will be warranted for one year from the date of purchase. However, depending on the case, actual expenses for sending technical assistance will be charged to the customer. Also, Hitachi will not be responsible of any readjustment or testing on site.
- Warranty period for repaired or replaced part based on a warranty service is 6 months after the repair is completed for the relevant part. Hitachi will be responsible for repairing or exchanging the previously exchanged or repaired part only during this warranty period.
- In order to receive warranty service, you should present the receipt issued by the product supplier or any other document that allow us to check the purchase date. However, any defects, damage, malfunction or any other failure caused by one of the following facts will not be covered by warranty service.
(1) Cannot confirm the purchase date.
(2) The damage or fault resulted from improper usage or inadequate handling of the product or usage that does not comply with the instructions described in the User's Guide or Basic Guide.
(3) Incorrect usage of the product and/or the inverter, inadequate setting of the product and/or the inverter, remodeling or inadequate repair or repair carried out by an unqualified repair center.
(4) Deterioration and wear as result of normal operation.
(5) Fault resulted from natural disaster, such as earthquake, fire disaster, lightning strike, pollution, salt pollution, or abnormal voltage or any others external factors.
(6) Shock, falling, or Vibration resulted during transportation or displacement after purchase.
(7) Damage or fault resulted from remodeling firmware by unqualified personal not belonging to Hitachi.
(8) Damage or fault resulted from using a function program (EzSQ).
- By warranty service, very likely lose the data stored inside the product, as well as, customers made (EzSQ) program. Make sure to back up by own responsibility. However, in case of malfunction resulting from the circuit board of the storage devices, the backup will not be possible. It is recommended to keep a backup during the testing phase by using VOP or PC software ProDriveNext.

Liability Limitation

- In this product warranty, all warranties offered to the customer are stipulated, and neither Hitachi, affiliated companies nor related dealers are liable to any express warranties or implied warranties including, but not limited to, product merchantability or specific application fitness.
- Also, Hitachi, affiliated companies or related dealers are not responsible of any incidental damage, special damage, direct loss, or indirect loss (even predictable or not) sustained by the customer as a result of a faulty product.

- Using the Warranty Service

- The customer is able to receive a warranty service during the warranty period from the product supplier or Hitachi inverter technical service office, if the product does not meet the specifications described in User's Guide or this guide. However, the User's Guide will have priority in case of mismatching content between this and the User's Guide.
- A fare-paying service can also be obtained by contacting your supplier, local Hitachi inverter distributor or Hitachi inverter technical service office.

- Precautions for Product Operation

- The product should be operated following the working conditions, handling methods and precautions described in Basic Guide, User's Guide or other technical Document
- Make sure that the Hitachi inverter is correctly configured and installed for the intended purpose in the designed system.
- When using the Hitachi inverter implement the take following actions
(1) Select an inverter with sufficient capacity for the rated current and performance.
(2) Implement safety design such as redundant system design.
(3) Implement safety design which minimizes risks in case of an inverter failure.
(4) Design the system in a way it can warn the operator about any danger.
(5) Carry out periodic maintenance to the customer's equipment as well as the inverter.
- Hitachi inverter is designed and manufactured intentionally to be applied for general industrial equipment application. It is not intended to be used for the applications listed below therefore. In case inverter is used for these applications, it is out of warranty unless there is a special written agreement. Otherwise, the product will not be warranted.
(1) Special application such as aircraft, spacecraft, nuclear, electric power, passenger transportation, medical, submarine repeater, etc.
(2) For application such as elevator, amusement equipment, medical equipment which might have a big effect on human life and property.
- Even for above application, in case there is an agreement for the limitation of the purpose and quality, please contact to our sales office. Further study will be carried out to check whether inverter is applicable for that specific application or not.
- For applications that involve human life, or have risk of important loss, make sure to avoid a critical accident by installing a fail-safe device, protecting device, detecting device, alarm device, or spare device, etc.
- This inverter is only for three phase induction motor [IM] or three phase synchronous motor [SM(SMM)].
- For any other application make inquiries.

- Change on Product Specifications

- Please be aware that the information described in Brochure, Basic Guide, User's Guide or Technical Document might be modified without notice.
- Supplement
- Refer to "Chapter 7 Specification" for short lifespan component.
- For optional product refer attached instruction manual.
- This warranty term will not restrict a legal right of customer who has purchased the product.
- Plaese contact your salse agent for warranty of products.

- Contact Information

Hitachi America, Ltd. (Charlotte Office)
Industrial Components and Equipment Division 6901 Northpark Blvd., Suite A, Charlotte, NC 28216, U.S.A

TEL : +1(704) 494-3008
FAX : +1(704) 599-4108
Hitachi Europe GmbH
Industrial Components \& Equipment Group
Niederkasseler Lohweg191, 40547 Dusseldorf,
Germany
TEL : +49-211-5283-0
FAX : +49-211-204-9049

Hitachi Asia Ltd.
Industrial Components \& Equipment Division
No. 30 Pioneer Crescent, \#10-15 West Park Bizcentral,
Singapore 628560,
Singapore
TEL : +65-6305-7400
FAX: +65-6305-7401

Hitachi Australia pty Ltd.

Suite 801, Level 8, 123 Epping Road, North Ryde, NSW, 2113, Australia
TEL : +61-2-9888-4100
FAX : +61-2-9888-4188
Hitachi Industrial Equipment Systems Co., Ltd.
AKS Building, 3, Kanda
Nereibei-cho, Chiyoda-ku,
Tokyo, 101-0022
Japan
TEL : +81-3-4345-6045
FAX : +81-3-4345-6913

S. 4 Related Basic / User's Guide

Document name	Document Number	Product bundle
SJ series P1 User's Guide	NT251*X	(*1)
SJ series P1 Basic Guide (This document)	NT2511*X	\checkmark
SJ series P1 Safety function Guide	NT2512*X	(*1)
SJ series P1 Easy-Sequence Function(EzSQ) Programming Guide	NT252*X	(*1)
P1-FB Encoder Feedback option User's Guide	NT253*X	\checkmark
P1-EN Ethernet Communication Option User's Guide	NT254*X	(*1)
P1-ECT EtherCAT Communication Option User's Guide	NT255*X	(*1)
P1-PB PROFIBUS Communication Option User's Guide	NT256*X	(*1)
P1-PN PROFINET Communication Option User's Guide	NT257*X	(*1)
P1-TM2 Screw control terminal block board Option User's Guide	NT259*X	\checkmark
P1-AG Analog Input/Output Option User's Guide	NT260*X	\checkmark
P1-CCL CC-Link Communication Option User's Guide	NT261*X	(*1)
P1-DN DeviceNet Communication Option User's Guide	NT262*X	(*1)
P1-FS Functional Safety Option Safety Function Guide	NT2582*X	\checkmark
ProDriveNext instruction manual(HITACHI Inverter setting software) (In preparing, please contact our sales)	NT8001*X	(*1)

(The document version ("*" is alphabet A, B, \ldots.) is added to the end of document code.)
(*1) These are usually not bundled with the product but a simple basic guide is included.
Please contact your local sales office for each User's Guides.

S. 5 Trademark

- CRIMPFOX ${ }^{\circledR}$ is a registered trademark of Phoenix Contact GmbH \& Co. KG.
- Modbus ${ }^{\circledR}$ is a registered trademark of Schneider Automation Inc.
- EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
- PROFIBUS ${ }^{\circledR}$ and PROFINET® is registered trademark of PROFIBUS Nutzerorganisation e.V. (PNO).
- CC-Link ${ }^{\circledR}$ is trade names of Mitsubishi Electric Co.
- DeviceNet ${ }^{\oplus}$ is the trademark of Open DeviceNet Vendor Association, Inc.

C. 1 Contents

S. 1 IntroductionS-1
S. 2 Cautions S-1
S. 3 Product Warranty and Inquiry S-2
Chapter 1 Safety Instructions
1.1 Types of Warnings 1-1
1.2 Description of Safety Symbols. 1-1
1.3 Cautions 1-2
Chapter 2 Installation and Wiring
2.1 Check the Inverter. 2-1
2.2 Install the Inverter 2-2
2.3 Dimensions Drawing 2-5
2.4 Inverter Wiring 2-8
2.5 Wiring of the main circuit 2-9
2.6 Recommended wire size, wiring accessories
2.6 Recommended wire size, wiring accessories and crimp terminals 2-10
S. 4 Related Basic / User's Guide S-4
S. 5 Trademark S-4
C. 1 Contents C-1
(Memo)

Chapter 1 Safety Instructions

1.1 Types of Warnings

In the Basic Guide, the severity levels of safety precautions and residual risks are classified as: "DANGER", "WARNING" and "CAUTION".

Display meanings

ADDANGER

Indicates that incorrect handling may cause hazardous situations, which would most likely result in serious personal injury or death, and may result in major physical loss or damage.

A. WARNING

Indicates that incorrect handling may cause hazardous situations, which may result in serious personal injury or death, and may result in major physical loss or damage.

Indicates that incorrect handling may cause hazardous situations, which may result in moderate or slight personal injury or damage, and may result only physical loss or damage.

Furthermore, " \triangle CAUTION " level description may lead to a serious risk depend on the circumstances. Be sure to follow the instruction because whichever contains important safety description.

1.2 Description of Safety Symbols

It describes annotation of the symbols in context. Be sure to follow and pay attention of content.

Symbols meaning

	Indicates a danger, warning or caution notice for fire, electric shock and high temperature while handling the product. Details are indicated in or near \triangle by pictures or words.
	The drawing on the left indicates "a non-specific and general danger or caution".
	The drawing on the left indicates "a possible damage due to electric shock".
	Indicates "what you must do" according to product. the instructions in the operation of the acts in the operation of the product.

1.3 Cautions

Read carefully following safety instruction for handling.

1.3.1 Please be Careful!

- If handled incorrectly or improperly, it might cause death, serious physical injuries, or damage Caution to the inverter, motor or even the entire system.
- Before installation, wiring, operation, inspection, or usage, read and fully understand this guide.

In order to explain this device details the illustrations in this guide might show this device without covers.

Before operating this device please return all the covers to the original position, and follow all the necessary regulations and instructions written in this guide.
1.3.2 Precautions during the installation!

! WARNING

Fire
Hazard

Prohibited

- Risk of Fire!

- DO NOT place inflammable objects nearby.
- DO NOT let scraps of wire, welding sputtering, irons scraps or other objects get inside the device.
- Avoid installing this device in places with high temperature, high humidity, Condensation-prone conditions, dusty conditions, corrosive gas, grinding fluid mist, hydrogen sulfide or salt damage prone conditions. Additionally, it is recommended to install this device in ventilated room not exposed to direct sunlight.

- Risk of Injury!

- DO NOT install or operate products with damage or missing parts.

Prohibited

Fall

Prohibited

Prohibited

Iniury • DO NOT hold its cover parts when carrying the inverter.

- Install the inverter on a structure able to bear the weight specified in this Basic Guide.
- Install the inverter on a vertical wall that is free of vibrations.
- Risk of failure of the inverter!
- Risk of injury due to the inverter falling!
- Risk of failure of the inverter!
- The device is a precision equipment, do not drop it, or give it a strong shock.
- DO NOT get on (step on) or place heavy objects on this device.

1.3.3 Precautions for Wiring

- Risk of an electric shock and/or fire!

Electric - Be sure to ground the inverter.
shock Fire - Entrust the wiring work only to a qualified electrician.

Do

- Before the wiring work make sure to turn off the power supply and wait for more than 10 or 15 minutes depending on the invertor model*1. (Confirm than the charge lamp is OFF and the DC bus voltage between terminals P and N is 45V or less.)

- Risk of failure of the inverter!

Prohibited

Electric

- Risk of an electric shock and/or injury!

- Perform the wiring only after installing the inverter.

- Risk of short circuit and ground fault!

Do not remove rubber bushings from the wiring section. Otherwise, the edges of the wiring cover may damage the wire.

Prohibited
*1) For P1-00044-L to P1-01240-L (P1-004L to P1-220L), P1-00041-H to P1-00620-H ($\mathrm{P} 1-007 \mathrm{H}$ to $\mathrm{P} 1-220 \mathrm{H}$) models the wait time is 10 minutes.
For P1-01530-L to P1-02950-L (P1-300L to P1-550L), P1-00770-H to P1-05200-H ($\mathrm{P} 1-300 \mathrm{H}$ to $\mathrm{P} 1-2200 \mathrm{H}$) models the wait time is 15 minutes.

- Risk of injury or fire

Prohibited

- Do not connect AC power supply to any of the output terminals (U, V, and W).

Make sure that the voltage of AC power supply matches the rated voltage of your inverter.

Electric shock Injury

- Risk of electric shock and injury!

- Before operating slide-switch(SW) in the inverter, be sure to turn off the power supply.
- Since the inverter supports two modes of cooling-fan operation, the inverter power is not always off, even when the cooling fan is stopped. Therefore, be sure to confirm that the power supply is off before wiring

Fire

- DO NOT use a single-phase input.
- DO NOT connect a resistor directly to any of the DC terminals (PD, P, and N).
Prohibited • DO NOT use the magnetic contactor installed on the primary and secondary sides of the inverter to stop its operation.
- Tighten each screw to the specified torque.
- No screws must be left loose.
- Connect an earth-leakage breaker to the power input circuit.
- Use only the power cables, earth-leakage breaker, and magnetic contactors that have the specified capacity (ratings).

1.3.4 Precautions to Run and Test Running

Electric shock Fire

Prohibited

- Risk of electric shock or fire!

- While power is supplied to the inverter, do not touch any internal part or terminal of the inverter. Also do not check signals, or connect or disconnect any wire or connector.
- While power is supplied to the inverter, do not touch any internal part of the inverter. Also do not insert a material such as a rod and etc.

- Risk of injury and damage to machine!
- Do not select the retry mode for controlling an elevating or traveling device because free-running status occurs in retry mode.

Prohibited

Injury

- Be sure to close the terminal block cover before turning on the inverter power. Do not open the terminal block cover while power is being supplied to the inverter or voltage remains inside.
- Do not operate switches with wet hands.

Prohibited

- While power is supplied to the inverter, do not touch the terminal of the inverter, even if it
has stopped.

- Risk of injury or fire!

Prohibited

- Risk of electric shock!

Electric shock

- Risk of injury!

- If the retry mode has been selected, the inverter will restart suddenly after a break in the tripping status. Stay away from the machine controlled by the inverter when the inverter is under such circumstances. (Design the machine so that human safety can be ensured, even when the inverter restarts suddenly.)
- The [STOP] key on the operator keypad is effective only when its function is enabled by setting. Prepare an emergency stop switch separately.
- If an RUN command has been input to the inverter before a short-term power failure, the inverter may restart operation after the power recovery. If such a restart may put persons in danger, design a control circuit that disables the inverter from restarting after power recovery.
- If an RUN command has been input to the inverter before the inverter enters alarm status, the inverter will restart suddenly when the alarm status is reset. Before resetting the alarm status, make sure that no RUN command has been input.

\triangle

Injury Damage

- Risk of injury and damage to machine!
- The inverter easily allows you to control the speed of operating motor. Confirm the capacity and ratings of the motor or machine before operating.
- When you run the motor at a high frequency, check and confirm to each manufactures of a permitting revolution of the respective motor and machine.
- Check the rotate motor direction, abnormal sound, and vibrations while operating.

Prohibited

1.3.5 Precautions for Maintenance/Inspection

- Risk of electric shock!

- Before inspecting the inverter, be sure to turn

Do off the power supply and wait for more than 10 or 15 minutes depending on the invertor model ${ }^{* 1}$. (Before inspection, confirm that the Charge lamp on the inverter is off and the $D C$ bus voltage between terminals P and N is 45 V or less.)

Prohibited

- Commit only a designated person to maintenance, inspection, and the replacement of parts. (Be sure to remove wristwatches and metal accessories, e.g., bracelets, before maintenance and inspection work and to use insulated tools for the work.)
*1) For P1-00044-L to P1-01240-L (P1-004L to P1-220L), P1-00041-H to P1-00620-H ($\mathrm{P} 1-007 \mathrm{H}$ to $\mathrm{P} 1-220 \mathrm{H}$) models the wait time is 10 minutes.
For P1-01530-L to P1-02950-L (P1-300L to P1-550L), P1-00770-H to P1-05200-H ($\mathrm{P} 1-300 \mathrm{H}$ to $\mathrm{P} 1-2200 \mathrm{H}$) models the wait time is 15 minutes.

1.3.6 Precautions for disposal

Injury
Explosion

Do

- Risk of injury and explosion!
- For disposal of the inverter, outsource to a qualified industrial waste disposal contractor. Disposing of the inverter on your own may result in an explosion of the capacitor or produce poisonous gas.
- Contact us or your distributor for fixing the inverter.

- A qualified waste disposer includes industrial waste collector/transporter and industrial waste disposal operator. Follow the act related to procedures stipulated in the waste management and public cleansing for disposing of the inverter.
1.3.7 Other Cautions

DANGER

1.4 Compliance to European Directive (CE)

1.4.1 Caution for EMC (Electromagnetic Compatibility)

The SJ series P1 inverter conforms to requirements of Electromagnetic Compatibility (EMC) Directive (2014/30/EU). However, when using the inverter in Europe, you must comply with the following specifications and requirements to meet the EMC Directive and other standards in Europe:

WARNING: This equipment must be installed, adjusted, and maintained by qualified engineers who have expert knowledge of electric work, inverter operation, and the hazardous circumstances that can occur. Otherwise, personal injury may result.

1. Power supply requirements
a. Voltage fluctuation must be -15% to $+10 \%$ or less.
b. Voltage imbalance must be $\pm 3 \%$ or less.
c. Frequency variation must be $\pm 4 \%$ or less.
d. Total harmonic distortion (THD) of voltage must be $\pm 10 \%$ or less.
2. Installation requirement
a. SJ series P1 includes a built-in EMC filter. The built-in EMC filter must be activated.
b. According to EN61800-3 it is mandatory to mention that any inverter with only C3 filter inside may NOT be connected to a low voltage public power supply in residential areas since for these installations C 1 is required.
c. In case of external filter for C2, an additional note is required according to EN61800-3 that "this product may emit high frequency interference in residential areas which may require additional EMC measures".
3. Wiring requirements
a. A shielded wire (screened cable) must be used for motor wiring, and the length of the cable must be according to the following table (Table 1 on page 1-6).
b. The carrier frequency must be set according to the following table to meet an EMC requirement (Table1 on page 1-6).
c. The main circuit wiring must be separated from the control circuit wiring.
4. Environmental requirements
(to be met when a filter used)
a. SJ series P1 inverter that is activated built-in EMC filter must be according to SJ series P1 specifications.

Table 1

Model	Cat.	Cable Length (m)	Carrier Frequency (kHz)	Model	Cat.	Cable Length (m)	Carrier Frequency (kHz)
$\begin{aligned} & \hline \text { P1-00044-L } \\ & \text { (P1-004L) } \\ & \hline \end{aligned}$	C3	3	2	-	-	-	-
$\begin{aligned} & \text { P1-00080-L } \\ & \text { (P1-007L) } \\ & \hline \end{aligned}$	C3	3	2	$\begin{aligned} & \hline \text { P1-00041-H } \\ & \text { (P1-007H) } \\ & \hline \end{aligned}$	C3	3	2
$\begin{aligned} & \hline \text { P1-00104-L } \\ & \text { (P1-015L) } \\ & \hline \end{aligned}$	C3	3	2	$\begin{aligned} & \text { P1-00054-H } \\ & (\mathrm{P} 1-015 \mathrm{H}) \\ & \hline \end{aligned}$	C3	3	2
$\begin{aligned} & \hline \text { P1-00156-L } \\ & \text { (P1-022L) } \\ & \hline \end{aligned}$	C3	3	2	$\begin{gathered} \hline \text { P1-00083-H } \\ (\mathrm{P} 1-022 \mathrm{H}) \end{gathered}$	C3	3	2
$\begin{aligned} & \hline \text { P1-00228-L } \\ & \text { (P1-037L) } \end{aligned}$	C3	3	2	$\begin{aligned} & \hline \text { P1-00126-H } \\ & \text { (P1-037H) } \end{aligned}$	C3	3	2
$\begin{aligned} & \text { P1-00330-L } \\ & \text { (P1-055L) } \\ & \hline \end{aligned}$	C3	5	2	$\begin{aligned} & \text { P1-00175-H } \\ & \text { (P1-055H) } \\ & \hline \end{aligned}$	C3	5	2
$\begin{aligned} & \hline \text { P1-00460-L } \\ & \text { (P1-075L) } \\ & \hline \end{aligned}$	C3	5	2	$\begin{aligned} & \text { P1-00250-H } \\ & \text { (P1-075H) } \\ & \hline \end{aligned}$	C3	5	2
$\begin{aligned} & \hline \text { P1-00600-L } \\ & \text { (P1-110L) } \\ & \hline \end{aligned}$	C3	5	2	$\begin{aligned} & \hline \text { P1-00310-H } \\ & \text { (P1-110H) } \\ & \hline \end{aligned}$	C3	5	2
$\begin{aligned} & \hline \text { P1-00800-L } \\ & \text { (P1-150L) } \end{aligned}$	C3	10	1	$\begin{aligned} & \hline \text { P1-00400-H } \\ & \text { (P1-150H) } \end{aligned}$	C3	10	2
$\begin{aligned} & \text { P1-00930-L } \\ & \text { (P1-185L) } \\ & \hline \end{aligned}$	C3	10	1	$\begin{aligned} & \text { P1-00470-H } \\ & \text { (P1-185H) } \\ & \hline \end{aligned}$	C3	10	2
$\begin{aligned} & \text { P1-01240-L } \\ & \text { (P1-220L) } \\ & \hline \end{aligned}$	C3	10	1	$\begin{aligned} & \text { P1-00620-H } \\ & \text { (P1-220H) } \\ & \hline \end{aligned}$	C3	10	2
$\begin{aligned} & \hline \text { P1-01530-L } \\ & \text { (P1-300L) } \\ & \hline \end{aligned}$	C3	5	2	$\begin{aligned} & \hline \text { P1-00770-H } \\ & \text { (P1-300H) } \end{aligned}$	C3	5	2
$\begin{gathered} \hline \text { P1-01850-L } \\ \text { (P1-370L) } \end{gathered}$	C3	5	2	$\begin{aligned} & \text { P1-00930-H } \\ & \text { (P1-370H) } \end{aligned}$	C3	5	2
$\begin{aligned} & \text { P1-02290-L } \\ & \text { (P1-450L) } \\ & \hline \end{aligned}$	C3	5	2	$\begin{aligned} & \text { P1-01160-H } \\ & \text { (P1-450H) } \\ & \hline \end{aligned}$	C3	5	2
$\begin{aligned} & \text { P1-02950-L } \\ & \text { (P1-550L) } \\ & \hline \end{aligned}$	C3	5	2	$\begin{aligned} & \text { P1-01470-H } \\ & \text { (P1-550H) } \\ & \hline \end{aligned}$	C3	5	2
-	-	-	-	$\begin{aligned} & \hline \text { P1-01760-H } \\ & \text { (P1-750H) } \end{aligned}$	C3	3	2
-	-	-	-	$\begin{aligned} & \text { P1-02130-H } \\ & \text { (P1-900H) } \end{aligned}$	C3	3	2
-	-	-	-	$\begin{aligned} & \text { P1-02520-H } \\ & \text { (P1-1100H) } \\ & \hline \end{aligned}$	C3	3	2
-	-	-	-	$\begin{aligned} & \text { P1-03160-H } \\ & \text { (P1-1320H) } \\ & \hline \end{aligned}$	C3	3	2
				$\begin{aligned} & \hline \text { P1-03720-H } \\ & \text { (P1-1600H) } \end{aligned}$	C3	3	2
				$\begin{aligned} & \text { P1-04320-H } \\ & \text { (P1-1850H) } \end{aligned}$	C3	3	2
				$\begin{aligned} & \text { P1-04860-H } \\ & \text { (P1-2000H) } \\ & \hline \end{aligned}$	C3	3	2
				$\begin{aligned} & \text { P1-05200-H } \\ & \text { (P1-2200H) } \\ & \hline \end{aligned}$	C3	3	2

1.4.2 Caution for Machinery Directive (Functional Safety)

When using STO (Safe Torque Off)

 function be sure to read the "Safety functional Guide" of separate!SJ Series P1 conforms to STO (Safe Torque Off) defined in Functional Safety IEC 61800-5-2.

When using the STO function refer to "SJ-P1 Safety Function Guide Supplement"(NTZ2512*X) on the separate sheet. And further download "Safety function Guide (NT2512*X)" from our website and carefully read it . Applicable models are P1-00044-L(P1-004L) to P1-02950-H(P1-550L) and P1-00041-H(P1-007H) to P1-03160-H(P1-1320H).
For details, refer to "Appendix EC Declaration of Conformity (Copy)" on page A-1 of "Safety function Guide (NT2512*X)".

1.5 Compliance to UL standards

1.5.1 UL CAUTION

GENERAL:

SJ series Type P1 inverter is open type AC Inverter with three phase input and three phase output. It is intended to be used in an enclosure. It is used to provide both an adjustable voltage and adjustable frequency to the AC motor. The inverter automatically maintains the required volts-Hz ratio allowing the capability through the motor speed range. It is multi-rated device and the ratings are selectable according to load types by operator with key pad operation.

Markings:

Maximum Surrounding Temperature:

- ND (Normal Duty): 50degC
- LD (Low Duty): 45degC
- VLD (Very Low Duty): 40degC

Storage Environment rating:

- 65degC (for transportation)

Instruction for installation:

- Pollution degree 2 environment and Overvoltage category III

Electrical Connections:

- See Chapter "2.5 Wiring of the main circuit" of this guide.

Interconnection and wiring diagrams:

- See Chapter "2.10 Wiring of the control circuit" of this guide.

Short circuit rating and overcurrent protection device rating:

P1-L series models

- Suitable for use on a circuit capable of delivering not more than $5,000 \mathrm{rms}$ symmetrical amperes, 240 V maximum".

P1-H series models

- Suitable for use on a circuit capable of delivering not more than 5,000 rms symmetrical amperes, 500 V maximum".

Integral:

- Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes

Terminal size and terminal tightening torque for field wiring:
*200V Class

Model	Load Type	Required Torque($\mathrm{N} \cdot \mathrm{m}$)	Conductor size (AWG)
$\begin{aligned} & \text { P1-00044-L } \\ & \text { (P1-004L) } \end{aligned}$	VLD	1.4	14
	LD		
	ND		
$\begin{aligned} & \text { P1-00080-L } \\ & \text { (P1-007L) } \end{aligned}$	VLD	1.4	14
	LD		
	ND		
$\begin{aligned} & \text { P1-00104-L } \\ & \text { (P1-015L) } \end{aligned}$	VLD	1.4	14
	LD		
	ND		
$\begin{aligned} & \text { P1-00156-L } \\ & \text { (P1-022L) } \end{aligned}$	VLD	1.4	10
	LD		14
	ND		
$\begin{aligned} & \text { P1-00228-L } \\ & \text { (P1-037L) } \end{aligned}$	VLD	1.4	10
	LD		
	ND		
$\begin{aligned} & \text { P1-00330-L } \\ & \text { (P1-055L) } \end{aligned}$	VLD	3	8
	LD		
	ND		
$\begin{aligned} & \text { P1-00460-L } \\ & \text { (P1-075L) } \end{aligned}$	VLD	3	6
	LD		8
	ND		
$\begin{aligned} & \text { P1-00600-L } \\ & \text { (P1-110L) } \end{aligned}$	VLD	4	4
	LD		
	ND		6
$\begin{aligned} & \text { P1-00800-L } \\ & \text { (P1-150L) } \end{aligned}$	VLD	2.5 to 3.0	3
	LD		
	ND		4
$\begin{aligned} & \text { P1-00930-L } \\ & \text { (P1-185L) } \end{aligned}$	VLD	2.5 to 3.0	1
	LD		2
	ND		3
$\begin{aligned} & \text { P1-01240-L } \\ & \text { (P1-220L) } \end{aligned}$	VLD	5.5 to 6.6	2/0
	LD		1/0
	ND		1
$\begin{aligned} & \text { P1-01530-L } \\ & \text { (P1-300L) } \end{aligned}$	VLD	6.0	Parallel of 1/0
	LD		Parallel of 1/0
	ND		2/0
$\begin{aligned} & \text { P1-01850-L } \\ & \text { (P1-370L) } \end{aligned}$	VLD	6.0 to 10.0	Parallel of $1 / 0$
	LD		Parallel of $1 / 0$
	ND	15.0	4/0
$\begin{aligned} & \text { P1-02290-L } \\ & \text { (P1-450L) } \end{aligned}$	VLD	6.0 to 10.0	Parallel of 2/0
	LD		Parallel of 1/0
	ND		Parallel of $1 / 0$
$\begin{aligned} & \text { P1-02950-L } \\ & \text { (P1-550L) } \end{aligned}$	VLD	10.0 to 12.0	Parallel of $3 / 0$
	LD		Parallel of $3 / 0$
	ND		350 kcmil

- Use 75degC only for temperature rating of field wiring.
- Use Cupper conductors only.
*400V Class

Model	Load Type	Required Torque(N•m)	Conductor size (AWG)
$\begin{aligned} & \text { P1-00041-H } \\ & \text { (P1-007H) } \end{aligned}$	VLD	1.4	14
	LD		
	ND		
$\begin{aligned} & \text { P1-00054-H } \\ & \text { (P1-015H) } \end{aligned}$	VLD	1.4	14
	LD		
	ND		
$\begin{aligned} & \text { P1-00083-H } \\ & \text { (P1-022H) } \end{aligned}$	VLD	1.4	14
	LD		
	ND		
$\begin{aligned} & \text { P1-00126-H } \\ & \text { (P1-037H) } \end{aligned}$	VLD	1.4	12
	LD		14
	ND		
$\begin{aligned} & \text { P1-00175-H } \\ & \text { (P1-055H) } \end{aligned}$	VLD	3	10
	LD		12
	ND		
$\begin{aligned} & \text { P1-00250-H } \\ & \text { (P1-075H) } \end{aligned}$	VLD	3	8
	LD		10
	ND		
$\begin{aligned} & \text { P1-00310-H } \\ & \text { (P1-110H) } \end{aligned}$	VLD	4	8
	LD		
	ND		
$\begin{aligned} & \text { P1-00400-H } \\ & \text { (P1-150H) } \end{aligned}$	VLD	4	8
	LD		
	ND		
$\begin{aligned} & \text { P1-00470-H } \\ & \text { (P1-185H) } \end{aligned}$	VLD	4	6
	LD		
	ND		8
$\begin{aligned} & \text { P1-00620-H } \\ & \text { (P1-220H) } \end{aligned}$	VLD	4	4
	LD		
	ND		6
$\begin{aligned} & \text { P1-00770-H } \\ & \text { (P1-300H) } \end{aligned}$	VLD	2.5 to 3.0	1
	LD		2
	ND		3
$\begin{aligned} & \text { P1-00930-H } \\ & \text { (P1-370H) } \end{aligned}$	VLD	15.0	1
	LD		
	ND		
$\begin{aligned} & \text { P1-01160-H } \\ & \text { (P1-450H) } \end{aligned}$	VLD	15.0	1/0
	LD		1/0
	ND		1
$\begin{aligned} & \text { P1-01470-H } \\ & \text { (P1-550H) } \end{aligned}$	VLD	6.0 to 10.0	Parallel of 1/0
	LD	15.0	2/0
	ND		1/0
$\begin{aligned} & \text { P1-01760-H } \\ & \text { (P1-750H) } \end{aligned}$	VLD	10.0 to 12.0	Parallel of 1/0
	LD		Parallel of $1 / 0$
	ND		Parallel of 1/0
$\begin{aligned} & \text { P1-02130-H } \\ & \text { (P1-900H) } \end{aligned}$	VLD	10.0 to 12.0	Parallel of $2 / 0$
	LD		Parallel of $1 / 0$
	ND		Parallel of 1/0
$\begin{aligned} & \text { P1-02520-H } \\ & \text { (P1-1100H) } \end{aligned}$	VLD	10.0 to 12.0	Parallel of 3/0
	LD		Parallel of $2 / 0$
	ND		Parallel of 2/0
$\begin{aligned} & \text { P1-03160-H } \\ & \text { (P1-1320H) } \end{aligned}$	VLD	10.0 to 12.0	P. of 250 kcmil
	LD		Parallel of 4/0
	ND		Parallel of 3/0
$\begin{aligned} & \text { P1-03720-H } \\ & \text { (P1-1600H) } \end{aligned}$	VLD	15.5 to 18.5	P.of 250kcmil
	LD		Parallel of 4/0
	ND		Parallel of 3/0
$\begin{aligned} & \text { P1-04320-H } \\ & \text { (P1-1850H) } \end{aligned}$	VLD	15.5 to 18.5	P.of 300 kcmil
	LD		P.of 250 kcmil
	ND		P.of 250 kcmil
$\begin{aligned} & \text { P1-04860-H } \\ & \text { (P1-2000H) } \end{aligned}$	VLD	37.0	P. of 350 kcmil
	LD		P. of 300 kcmil
	ND		P. of 250 kcmil
$\begin{aligned} & \text { P1-05200-H } \\ & \text { (P1-2200H) } \end{aligned}$	VLD	37.0	P. of 400 kcmil
	LD		P. of 350 kcmil
	ND		P. of 300 kcmil

Required protection by Fuse and circuit-breakers:
P1-L series models

Model	Fuse			Circuit Breaker Maximum Rating	
	Type	Maximum Rating			
		Voltage (V)	Current (A)	Voltage (V)	Current (A)
$\begin{gathered} \text { P1-00044-L } \\ \text { (P1-004L) } \end{gathered}$	Class J or T	600	15	-	-
$\begin{gathered} \hline \text { P1-00080-L } \\ \text { (P1-007L) } \\ \hline \end{gathered}$	Class J or T	600	30	-	-
$\begin{gathered} \hline \text { P1-00104-L } \\ \text { (P1-015L) } \\ \hline \end{gathered}$	Class J or T	600	40	-	-
$\begin{gathered} \hline \text { P1-00156-L } \\ \text { (P1-022L) } \end{gathered}$	Class J or T	600	40	-	-
$\begin{gathered} \hline \text { P1-00228-L } \\ \text { (P1-037L) } \\ \hline \end{gathered}$	Class J or T	600	50	-	-
$\begin{gathered} \text { P1-00330-L } \\ \text { (P1-055L) } \end{gathered}$	Class J or T	600	100	-	-
$\begin{gathered} \hline \text { P1-00460-L } \\ \text { (P1-075L) } \\ \hline \end{gathered}$	Class J or T	600	150	-	-
$\begin{gathered} \hline \text { P1-00600-L } \\ \text { (P1-110L) } \\ \hline \end{gathered}$	Class J or T	600	150	-	-
$\begin{gathered} \hline \text { P1-00800-L } \\ \text { (P1-150L) } \\ \hline \end{gathered}$	Class J or T	600	150	-	-
$\begin{gathered} \hline \text { P1-00930-L } \\ \text { (P1-185L) } \\ \hline \end{gathered}$	Class J or T	600	200	-	-
$\begin{gathered} \text { P1-01240-L } \\ \text { (P1-220L) } \end{gathered}$	Class J or T	600	200	-	-
$\begin{gathered} \hline \text { P1-01530-L } \\ \text { (P1-300L) } \\ \hline \end{gathered}$	Class J or T	600	300	-	-
$\begin{gathered} \hline \text { P1-01850-L } \\ \text { (P1-370L) } \\ \hline \end{gathered}$	Class J or T	600	300	-	-
$\begin{gathered} \hline \text { P1-02290-L } \\ \text { (P1-450L) } \\ \hline \end{gathered}$	Class J or T	600	400	-	-
$\begin{gathered} \hline \text { P1-02950-L } \\ \text { (P1-550L) } \end{gathered}$	Class J or T	600	500	-	-

P1-H series models

Model	Fuse			Circuit Breaker Maximum Rating	
	Type	Maximum Rating			
		Voltage (V)	Current (A)	Voltage (V)	Current (A)
$\begin{aligned} & \text { P1-00041-H } \\ & \text { (P1-007H) } \end{aligned}$	Class J or T	600	15	-	-
$\begin{aligned} & \text { P1-00054-H } \\ & \text { (P1-015H) } \end{aligned}$	Class J or T	600	20	-	-
$\begin{aligned} & \text { P1-00083-H } \\ & (\mathrm{P} 1-022 \mathrm{H}) \\ & \hline \end{aligned}$	Class J or T	600	30	-	-
$\begin{aligned} & \text { P1-00126-H } \\ & \text { (P1-037H) } \end{aligned}$	Class J or T	600	30	-	-
$\begin{aligned} & \hline \text { P1-00175-H } \\ & \text { (P1-055H) } \end{aligned}$	Class J or T	600	75	-	-
$\begin{aligned} & \text { P1-00250-H } \\ & \text { (P1-075H) } \end{aligned}$	Class J or T	600	75	-	-
$\begin{aligned} & \hline \text { P1-00310-H } \\ & \text { (P1-110H) } \\ & \hline \end{aligned}$	Class J or T	600	75	-	-
$\begin{aligned} & \text { P1-00400-H } \\ & \text { (P1-150H) } \end{aligned}$	Class J or T	600	100	-	-
$\begin{aligned} & \hline \text { P1-00470-H } \\ & \text { (P1-185H) } \\ & \hline \end{aligned}$	Class J or T	600	100	-	-
$\begin{aligned} & \hline \text { P1-00620-H } \\ & \text { (P1-220H) } \\ & \hline \end{aligned}$	Class J or T	600	100	-	-
$\begin{aligned} & \text { P1-00770-H } \\ & \text { (P1-300H) } \\ & \hline \end{aligned}$	Class J or T	600	200	-	-
$\begin{aligned} & \hline \text { P1-00930-H } \\ & \text { (P1-370H) } \\ & \hline \end{aligned}$	Class J or T	600	200	-	-
$\begin{aligned} & \text { P1-01160-H } \\ & \text { (P1-450H) } \end{aligned}$	Class J or T	600	200	-	-
$\begin{aligned} & \hline \text { P1-01470-H } \\ & \text { (P1-550H) } \\ & \hline \end{aligned}$	Class J or T	600	250	-	-
$\begin{aligned} & \hline \text { P1-01760-H } \\ & \text { (P1-750H) } \\ & \hline \end{aligned}$	Class J or T	600	300	-	-
$\begin{aligned} & \text { P1-02130-H } \\ & \text { (P1-900H) } \\ & \hline \end{aligned}$	Class J or T	600	400	-	-
$\begin{aligned} & \hline \text { P1-02520-H } \\ & \text { (P1-1100H) } \end{aligned}$	Class J or T	600	500	-	-
$\begin{aligned} & \text { P1-03160-H } \\ & \text { (P1-1320H) } \end{aligned}$	Class J or T	600	500	-	-
$\begin{aligned} & \text { P1-03720-H } \\ & \text { (P1-1600H) } \end{aligned}$	Class L	600	1000	-	-
$\begin{aligned} & \text { P1-04320-H } \\ & \text { (P1-1850H) } \end{aligned}$	Class L	600	1000	-	-
$\begin{aligned} & \text { P1-04860-H } \\ & \text { (P1-2000H) } \end{aligned}$	Class L	600	1000	-	-
$\begin{aligned} & \text { P1-05200-H } \\ & \text { (P1-2200H) } \end{aligned}$	Class L	600	1000	-	-

1.6 Precautions for installation

Notes for P1-00600-L (P1-110L)

©For the use of P1-00600-L (P1-110L) at low duty (LD)/very low duty (VLD), follow the installation procedures shown in the figure below.

Change [Ub-03] to 00 and [Ub-03] to 01 to set VLD and LD, respectively.

Procedures:
(1) Remove four truss head screws that hold the (upper and lower) brackets provided by factory configuration.
(2) Change the position of the screw holes for the (upper and lower) brackets.
(3) Tighten the (upper and lower) brackets using four truss head screws removed in (1).
(Tightening torque 2.2 to $2.5 \mathrm{~N} \cdot \mathrm{~m}$)
(4) Install P1-00600-L (P1-110L) on the wall using four screws prepared on your own.


```
Notes for P1-01240-L (P1-220L)
```

Procedures:
(1) Tighten (four) spacers to the (upper and lower) brackets as shown in Figure 1 using (four) M3×8 screws included in the package. (Tightening torque 0.6 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$)
(2) Install P1-01240-L(P1-220L) on the wall using four screws prepared on your own.

※Note
By adding spacers, the depth dimension of the inverter will be increased by 10 mm . Be careful as to installation in the cabinet or etc.

Chapter 2

Installation and Wiring

2.1 Check the Inverter

Check the contents in the package, and confirm the inverter model with a specification label.
\diamond Configuration and description contents vary depending on the model. Refer to User's Guide for more details.
$\diamond \quad$ If the inverter is shipped incorporated with optional products, optional instruction will be enclosed.

Inverter

Basic Guide (This document) And other supplementary instructions.

M3x8 screws: 4 pcs
Spacer: 4 pcs

Enclosed in the P1-01850-L(P1-370L)/ P1-00930-H(P1-370H) or above.

Eye bolts for hanging the inverter

Enclosed in the P1-03720-H(P1-1600H) to P1-05200-H(P1-2200H)

【The model of the product is as follows】
E.g.: 200 V class input voltage for Japan

Applicable motor capacity for ND rating is 3.7 kW
ND rated current 17.5A
LD rated current 19.6A
VLD rated current 22.8A

(1)

(2)

(1) Type name P1
(2) Motor maximum rated current (at VLD rated current 00001: 0.1A to 99999: 9999.9A
(3) Input power specification

L: three-phase 200 V class; H : three-phase 400 V class
(4) Panel

B: no operator keypad equipped;
F: panel equipped
(5) Region:
(None): Japan;
E: Europe/Southeast Asia;
U: North America; C: China
\diamond In case of (None), blank field is omitted.
(6) Integrated noise filter

F: integrated noise filter equipped;
CB: conduit box equipped
\diamond When both F and CB are equipped, it is indicated as FCB.

- Specification label example

Description example for P1-00228-LFF
(*) means eigenvalues

2.2 Install the Inverter

Transportation

- The inverter is made of plastics component. When carrying the inverter, handle it carefully to prevent the parts from damaging.
- Do not carry the inverter by holding the front or terminal block cover. Doing so may cause the inverter to fall.
- Do not install and operate the inverter if it is damaged or its parts are missing.

A. Ambient temperature

- Avoid installing the inverter in a place where the ambient temperature goes above or below the allowable range defined by the standard inverter specification.
Ambient temperature:

ND rated	$:-10$ to $50^{\circ} \mathrm{C}$
LD rated	$:-10$ to $45^{\circ} \mathrm{C}$
VLD rated	$:-10$ to $40^{\circ} \mathrm{C}$

- Keep sufficient space around the inverter. Measure the temperature in a position about 5 cm distant from the bottom-center point of the inverter, and check that the measured temperature is within the allowable range. Operating the inverter at a temperature outside this range will shorten the inverter life (especially the capacitor life), resulting in damage to the inverter.

\triangleDo not install on a high temperature, high humidity or easily condensation area

- Avoid installing the inverter in a place where the relative humidity goes above or below the range (20% to 90% RH), as defined by the standard inverter specification. Avoid a place where the inverter is subject to condensation.
- Condensation inside the inverter will result in short circuits, which may cause damage to the inverter. Also avoid places where the inverter is exposed to direct sunlight.

\triangleInstall inverter on nonflammable (e.g. metal) surface.

- The inverter will reach a high temperature (up to about $150^{\circ} \mathrm{C}$) during operation. Install the inverter on a vertical wall surface made of nonflammable material (e.g., metal) to avoid the risk of fire.
- In particular, keep sufficient distance between the inverter and other heat sources (e.g., braking resistors and reactors) if they are installed in the vicinity.

For

P1-00044-L to P1-02950-L (P1-004L to P1-550L) or
P1-00041-H to P1-01470-H (P1-007H to P1-550H)
' P1-01760-H to P1-05200-H
(P1-750H to P1-2200H)

In order to replace life cycle parts on following models require a clearance of $\mathbf{2 2 c m}$ or more:

- P1-00800-L (P1-150L) to P1-01240-L (P1-220L)
- P1-00380-H (P1-150H) to P1-00620-H (P1-220H)
\rangle In order to replace life cycle parts on following models is required to remove the installed units:
- P1-00044-L (P1-004L) to P1-00600-L (P1-110L)
- P1-00041-H (P1-007H) to P1-00310-H (P1-110H)

Installation environment

- Avoid installing the inverter in a place where the inverter is subject to dust, corrosive gases, explosive gases, flammable gases, grinding fluid mist, or salt water.
- Foreign particles entering the inverter will be the cause of failure. If you use the inverter in a considerably dusty environment, install the inverter inside a totally enclosed panel. Installation method and position
- Install the inverter vertically and securely with screws or bolts on a surface that is free from vibrations and that can bear the inverter weight.
- If the inverter is not installed properly, its cooling performance may be degraded and tripping or inverter damage may result.

Mounting in an enclosure

- When mounting multiple inverters in an enclosure with a ventilation fan, carefully design the layout of the ventilation fan, air intake port, and inverters. An inappropriate layout will reduce the inverter-cooling effect and raise the ambient temperature. Plan the layout properly so that the inverter ambient temperature will remain within the range specified in the specification table.

Position of ventilation fan
« When the inverter is installed below ventilation fan, the incoming dust may adhere to the inverter. Place in a position to avoid this falling dust.

Reduction of enclosure size

- External heat sink installation may reduce internal heat emission and reduce the enclosure size.
- External heat sink mounting for the inverter P1-00044-L to P1-00228-L (P1-004L to P1-037L) and
P1-00041-H to P1-00126-H (P1-007H to P1-037H) requires an optional metal fitting.
- Other models than above can be installed with the originally attached metal fitting. To mount the inverter for external heat sink, cut out the enclosure panel according to the specified cutting dimensions.
- The cooling section (including the heat sink) positioned outside the enclosure has a cooling fan. Therefore, do not place the enclosure in any environment where it is exposed to water drops, oil mist, or dust.
- The heat sink part reaches a high temperature. Install a protection cover as needed.
- Watt loss (W) (at 100\% load, approximate)

| P1-*****-L | | 00044 | 00080 | 00104 | 00156 | 00228 | 00330 | 00460 | 00600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P1-***L | | 004 | 007 | 015 | 022 | 037 | 055 | 075 | 110 |
| Watt
 loss
 los
 (W) | ND | 50 | 65 | 93 | 142 | 225 | 348 | 376 | 498 |
| | LD | 53 | 80 | 118 | 162 | 253 | 365 | 400 | 625 |
| | VLD | 65 | 105 | 135 | 197 | 314 | 420 | 520 | 754 |

P1-*****-L		00800	00930	01240	01530	01850	02290	02950
P1-***L		150	185	220	300	370	450	550
Watt loss (W)	ND	742	964	1163	1317	1534	1625	1878
	LD	922	1167	1263	1536	1801	1940	2669
	VLD	1059	1332	1377	1698	2092	2300	3046

P1-*****-H	00041	00054	00083	00126	00175	00250	00310	
P1-***H		007	015	022	037	055	075	110
Watt loss (W)	ND	62	94	96	145	235	240	260
	LD	67	98	107	163	260	280	306

P1-*****-H		00400	00470	00620	00770	00930	01160	01470
P1-***H		150	185	220	300	370	450	550
Watt loss los (W)	ND	361	495	687	783	812	1047	1130
	LD	444	601	805	854	880	1218	1488
	VLD	482	633	860	920	971	1300	1592

| P1-*****-H | | 01760 | 02130 | 02520 | 03160 | 03720 | 04320 | 04860 | 05200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P1-***H | | 750 | 900 | 1100 | 1320 | 1600 | 1850 | 2000 | 2200 |
| Watt
 loss | ND | 1570 | 2034 | 2219 | 3872 | 3896 | 4091 | 4514 | 4710 |
| | LD | 1811 | 2150 | 2397 | 4352 | 4379 | 4598 | 4622 | 5251 |
| | VLD | 2020 | 2359 | 2557 | 4598 | 4627 | 4858 | 5533 | 5689 |

(Note: This data are reference values at our site and varies depending on the power supply environment and motor power factor.)

Procedure to hang an inverter
When lifting the inverter,
Please lift according to the figure below
(1) Vertical Slinging.

When lifting vertically, fasten the supplied lifting bolts on the top left and right.Use an appropriate sling tool to achieve an appropriate swing angle in order to maintain sufficient load capacity considering the weight of the inverter. (P1-01850-L(P1-370L) to P1-02950-L(P1-550L) /P1-00930-H(P1-370H) to P1-05200-H(P1-2200H))

(2) Horizontal Slinging.
(P1-03720-H(1600H)~P1-5200-H(2200H))
Shift the pre-fixed eyebolts (1) and (2) to front cover side and screw tightly.
Fix the bundled eyebolts (3) and (4) to the front cover side at 2 points on the lower side and screw tightly.

\triangle
For models of 400 V 160 kW or more, refer to the following when using a chokes for power factor correction and braking unit in combination.

When chokes for power factor correction is connected and braking unit is used, remove short bar between PD-P and connect the wire to DC link choke on PD terminal and connect the wire from DC link choke with bundled "Supplemental terminal for braking unit connection" ${ }^{*} 1$) fixed on P terminal. And then, connect wire to braking unit to supplemental terminal for braking unit with M8 terminal. Be sure to use bundled 2 pcs of M8 terminals for braking unit For grounding, be sure to use 2 pcs of bundled M12 bolt for gournding wire, and fix tightly on grounding terminal on inverter unit.
(*1)Note: The shapes of "Supplemental terminal for braking unit connection" for $1600 \mathrm{H} / 1850 \mathrm{H}$ and $2000 \mathrm{H} / 2200 \mathrm{H}$ is different.

2.3 Dimension Drawing

\triangleleft If you add optional parts to the inverter, some extra space is required in the direction of the depth of the inverter depending on the wiring layout. Keep a clearance of 50 mm or more. For details, refer to the instruction guide for each optional product.

Model P1-******* (P1-****)			
200V class: $00044-L(004 L), 00080-L(007 L)$, $0104-L(015 L), 00156-L(022 L), 00228-L(037 L)$ 400 V class: $00041-H(007 \mathrm{H}), 00054-\mathrm{H}(015 \mathrm{H}), 00083-\mathrm{H}(022 \mathrm{H})$, $00126-\mathrm{H}(037 \mathrm{H})$			
Dimension	W(mm)	$\mathrm{H}(\mathrm{mm})$	D(mm)
	150	255	140

(Eg.) See "Chapter 7 Specifications" for details. VLD rated current for 00044-L(004L) is 4.4A,
(ND rated motor capacity is 0.4 kW), and L indicates 200 V class, while H indicates 400 V class.

Model P1-****** (P1-****)			
200V class:	00800-L(150L), 00930-L(185L), 01240-L(220L)		
400V class:	$00400-\mathrm{H}(150 \mathrm{H}), 00470-\mathrm{H}(185 \mathrm{H}), 00620-\mathrm{H}(220 \mathrm{H})$		
Dimension	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$
	245	390	190

Model P1-*****_* (P1-****)			
200V class: 01850-L(370L), 02290-L(450L),			
400V class: $00930-\mathrm{H}(370 \mathrm{H}), 01160-\mathrm{H}(450 \mathrm{H}), 01470-\mathrm{H}(550 \mathrm{H})$			
Dimension	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	
	390	550	
$\mathrm{D}(\mathrm{mm})$			

Model P1-****** (P1-****)			
400V class: 01760-H(750H), 02130-H(900H)			
	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$
	390	700	270

Model P1-****** (P1-*****)			
400 V class: 02520-H(1100H), 03160-H(1320H)			
Dimension	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$
	480	740	270

Model P1-*****_* (P1-*****)			
400 V class: 03720-H(1600H)			
Dimension	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$
	480	995	370

Model P1-*****_* (P1-*****)

400V class: $04320-\mathrm{H}(1850 \mathrm{H})$

Dimension	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$
	680	995	370

Model P1-****** (P1-*****)			
400 V class: 04860-H(2000H), 05200-H(2200H)			
	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{D}(\mathrm{mm})$
	680	995	370

2.4 Inverter Wiring

Applicable peripheral equipment

Notes:

- The description of peripheral equipment is for Hitachi 3-phase, 4-pole squirrel-cage motor.
- Select breakers with proper interrupting capacity. (Use inverter-ready breakers)
- Use earth-leakage circuit breakers (ELB or MCB) to ensure safety.
- Use copper electric wire (HIV cable) with allowable temperature rating $75^{\circ} \mathrm{C}$ or more.
- If the power line exceeds 20 m , use cable with major wire size for the power line.
- Tighten each terminal screw with the specified tightening torque. Loose terminal screws may cause short circuits and fire.
Excessive tightening torque may cause damage to the terminal block or inverter body.
- When selecting a rated sensitivity current for earth-leakage circuit breaker, use a separated breaker considering a total cable length of between Inverter-Power supply and Inverter-Motor distance. Do not use a high-speed type of earth-leakage circuit breaker. Use a inverter-ready breaker, because the high-speed type may malfunction.
- When using a CV cable for wiring through a metal conduit, the average current leakage would be $30 \mathrm{~mA} / \mathrm{km}$.
- When using a high relative dielectric constant cable such as IV cable, the leakage current is about eight times as high as the standard cable. Therefore, when using an IV cable, use Earth-leakage circuit breaker (ELB) with rated sensitivity current by eight times higher in the table below. If the total cable length exceeds 100 m , use a CV cable.
- Do not pull the power line cable after wiring. Doing so may cause screw loosening.
-The inverter of $160 \mathrm{~kW}(\mathrm{P} 1-1600 \mathrm{H})$ or more, be sure to use a reactor (DCL or ALI) for power factor correction. (Normally, use DCL)

Total cable length	Sensitivity current (mA)
100 m or less	50
300 m or less	100

No.	Name	Function
<1>	Electric wire	See "Recommended wire size, wiring accessories, and crimp terminals" on Chapter 2.6.
<2>	Earth-leakage circuit breaker ELB or MCCB	
<3>	Magnetic contactor MC	
<4>	Input side AC reactor (For harmonic control, power supply coordination, and power factor correction) (ALI-****)	Use input reactor for harmonic wave control, or when power supply voltage imbalance exceeds 3% or more, or when the power supply capacity is over 500 kVA or more, or when the power voltage may change rapidly. This reactor also improves the power factor.
<5>	Noise filter for inverter	This noise filter reduces the conductive noise that is generated by the inverter and transmitted in cables. Connect this noise filter to the primary side (input side) of the inverter.
<6>	Radio noise filter (Zero-phase reactor) (ZCL-**)	The inverter may generate radio noise through power supply wiring during operation. Use this noise filter to reduce the radio noise (radiant noise).
<7>	Radio noise filter on the input side (Capacitor filter)	Use this noise filter to reduce the radiant noise radiated from input cables.
<8>	DC link Choke (DCL-***)	Use DC link chokes to reduce the harmonic generated by the inverter. This reactor also improves the power factor.
<9>	Braking resistor	Use these devices to increase the braking torque of the inverter for operation in which the inverter turns the connected load on and off very frequently or decelerates the load running with a high moment of inertia.
<10>	Regenerative braking unit (BRD-***)	
<11>	Noise filter on the output side	Connect this noise filter between the inverter and motor to reduce the radiant noise radiated from cables for the purpose of reducing the electromagnetic interference with radio and television reception and preventing malfunctions of measuring equipment and sensors.
<12>	Radio noise filter (Zero-phase reactor) (ZCL-**)	Use this noise filter to reduce the noise generated on the output side of the inverter. (This noise filter can be used on both the input and output sides.)
<13>	Output side AC reactor(ACL-****) (For reducing vibrations and preventing thermal relay malfunction)	Inverter driven motor may cause large vibrations compared to commercial power supply direct start motor. Connect Output AC reactor between inverter and motor to lessen the pulsation of motor. Also, connect output AC reactor, when the cable length between inverter and motor is longer (10 m or more), to prevent thermal relay malfunction due to the harmonic waves generated by switching operation of inverter. Note that the thermal relay can be replaced with a current sensor to avoid the malfunction.
<14>	LCR filter	Connect this noise filter between the inverter and motor to convert the inverter output into a sinusoidal waveform and to reduce the motor vibration, motor noise and the radiant noise radiated from cables. Surge voltage can be also controlled,

2.5 Wiring of the main circuit

Wire the main circuit of the inverter.
The following illustration shows the power supply and wiring connections to a motor only.
Open a terminal block cover to wire the terminal block in the main circuit.

Explanation of main circuit terminal block

Symbol	Terminal name	Description		
$\begin{aligned} & \hline \mathrm{R}, \mathrm{~S}, \mathrm{~T} \\ & (\mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3) \end{aligned}$	Main power input	Connect to the AC power supply. Leave these terminals unconnected when using a regenerative converter.		
$\begin{aligned} & \hline \mathrm{U}, \mathrm{~V}, \mathrm{~W} \\ & (\mathrm{~T} 1, \mathrm{~T} 2, \mathrm{~T} 3) \end{aligned}$	Inverter output	Connect a Three-phase motor.		
	DC link choke connection terminal	Remove the PD-P jumper from terminals, and connect the optional DC link choke (Ex) HITACHI Model is DCL-***) for power factor improvement.		
$\begin{aligned} & P, R B \\ & (+, R B) \end{aligned}$	External chopper braking resistor connection terminal	Connect the optional external braking resistor. See "Chapter 7 Specifications" for built-in braking circuit inverter models.		
$\begin{aligned} & P, N \\ & (+,-) \end{aligned}$	Regenerative braking unit connection terminal	Connect the optional regenerative braking unit.		
\bigcirc	Inverter ground terminal	This serves as a ground terminal for the inverter chassis to ground. Connect 200 V class and 400 V class models to Type-D grounding and Type-C grounding, respectively.		
\checkmark See "Chapter 1 Safety Instructions" for response to CE and UL standards.				
\& If export is requir used.Wh round cr use. Use crimping \checkmark The scre for the siz other ter \checkmark The tab	U.S. or Canada or compliance s and breakers described ecting wires to the main cir erminal (UL-certified item) tool recommended by th l to crimp the terminal.	ith UL/CUL standards UL / cUL should be terminal block, use a able for the wires for manufacturer of the	\star The wire diameters shown in tables in Capter 2.6 Wire Diameter, Wiring Tools, and Crimping Terminals" indicate design values for HIV wire (resistant to $75^{\circ} \mathrm{C}$ heat). \checkmark When connecting wires to the main circuit terminal block, use a round crimping terminal in accordance with the wires for use. Use a crimp tool recommended by the manufacturer of the crimping	
	may vary depending on term e terminal screw for the po refer to the drawings of the Chapter2.6 list the specific	Refer to Capter 2.6 line cable while for ing on Capter 2.9. ns of cables, crimp	\& When replacing from SJ 700 to P 1 , if the wire diameter is differe etc, Please contact your supplier, Hitachi inverter technical serv office, or our salse office on page S-3	

2.6 Recommended wire size, wiring accessories and crimp terminals

■200V class

Applicable P1 inverter model P1-******	Rating setting	$\begin{gathered} \hline \text { Power line cable } \\ \text { AWG(mm2) } \\ \text { R,S,T,U,V,W, } \\ \text { P,PD,N } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Grounding } \\ & \text { cable } \\ & \text { AWG(mm2) } \end{aligned}$	External braking resistor between P and RB AWG(mm2)	Power line cable Terminal screw size	Crimp terminal Power/Ground	Tightening torque($\mathrm{N} \cdot \mathrm{m}$) Power/Ground (maximum value)
$\begin{aligned} & \text { P1-00044-L } \\ & \text { (P1-004L) } \end{aligned}$	ND	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	$\begin{gathered} 1.4 / 1.4 \\ (1.5 / 1.5) \end{gathered}$
	LD						
	VLD						
$\begin{aligned} & \text { P1-00080-L } \\ & \text { (P1-007L) } \end{aligned}$	ND	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	$\begin{gathered} 1.4 / 1.4 \\ (1.5 / 1.5) \end{gathered}$
	LD						
	VLD						
$\begin{aligned} & \text { P1-00104-L } \\ & \text { (P1-015L) } \end{aligned}$	ND	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	$\begin{gathered} 1.4 / 1.4 \\ (1.5 / 1.5) \end{gathered}$
	LD						
	VLD						
$\begin{aligned} & \text { P1-00156-L } \\ & \text { (P1-022L) } \end{aligned}$	ND	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	$\begin{gathered} 1.4 / 1.4 \\ (1.5 / 1.5) \end{gathered}$
	LD						
	VLD	10(5.3)	10(5.3)	10(5.3)		5.5-4/5.5-4	
$\begin{aligned} & \text { P1-00228-L } \\ & \text { (P1-037L) } \end{aligned}$	ND	10(5.3)	10(5.3)	10(5.3)	M4	5.5-4/5.5-4	$\begin{gathered} 1.4 / 1.4 \\ (1.5 / 1.5) \end{gathered}$
	LD						
	VLD						
$\begin{aligned} & \text { P1-00330-L } \\ & \text { (P1-055L) } \end{aligned}$	ND	8(8.4)	8(8.4)	8(8.4)	M5	8-5/8-5	$\begin{gathered} 3.0 / 3.0 \\ (3.0 / 3.0) \end{gathered}$
	LD						
	VLD						
$\begin{aligned} & \text { P1-00460-L } \\ & \text { (P1-075L) } \end{aligned}$	ND	8(8.4)	6(13.3)	8(8.4)	M5	8-5/8-5	$\begin{gathered} 3.0 / 3.0 \\ (3.0 / 3.0) \end{gathered}$
	LD						
	VLD	6(13.3)		6(13.3)		14-5/8-5	
$\begin{aligned} & \text { P1-00600-L } \\ & \text { (P1-110L) } \end{aligned}$	ND	6(13.3)	6(13.3)	6(13.3)	M6	14-6/14-6	$\begin{gathered} 4.0 / 4.0 \\ (5.2 / 5.2) \end{gathered}$
	LD	4(21.2)		4(21.2)		22-6/14-6	
	VLD			4(21.2)			
$\begin{aligned} & \text { P1-00800-L } \\ & \text { (P1-150L) } \end{aligned}$	ND	4(21.2)	6(13.3)	4(21.2)	M6	22-6/14-6	$\begin{gathered} 2.5-3.0 / 4.9 \\ (4.1 / 5.2) \end{gathered}$
	LD	3(26.7)		3(26.7)		8-6/14-6	
	VLD			$3(26.7)$		38-6/14-6	
$\begin{aligned} & \text { P1-00930-L } \\ & \text { (P1-185L) } \end{aligned}$	ND	3(26.7)	6(13.3)	3(26.7)	M6	38-6/14-6	$\begin{gathered} 2.5-3.0 / 4.9 \\ (4.1 / 5.2) \end{gathered}$
	LD	2(33.6)		2(33.6)			
	VLD	1(42.4)		1(42.4)		60-6/14-6	
$\begin{aligned} & \text { P1-01240-L } \\ & \text { (P1-220L) } \end{aligned}$	ND	1(42.4)	6(13.3)	1(42.4)	M8	60-8/14-6	$\begin{gathered} 5.5-6.6 / 4.9 \\ (9.0 / 5.2) \end{gathered}$
	LD	1/0(53.5)		1/0(53.5)			
	VLD	2/0(67.4)		2/0(67.4)		70-8/14-6	
$\begin{aligned} & \text { P1-01530-L } \\ & \text { (P1-300L) } \end{aligned}$	ND	2/0(67.4)	4(21.2)	-	M8	70-8/22-8	$\begin{gathered} \text { 6.0/11.7 } \\ (9.0 / 12.5) \end{gathered}$
	LD	$1 / 0 \times 2(53.5 \times 2)$				60-8/22-8	
	VLD					60-8/22-8	
$\begin{aligned} & \text { P1-01850-L } \\ & \text { (P1-370L) } \end{aligned}$	ND	4/0(107.2)	4(21.2)	-	M8	100-8/22-8	$\begin{gathered} \hline 15.0 / 11.7 \\ (15.0 / 12.5) \\ \hline \end{gathered}$
	LD	$1 / 0 \times 2(53.5 \times 2)$				60-8/22-8	6.0-10.0/11.7
	VLD					60-8/22-8	(12.0/12.5)
$\begin{aligned} & \text { P1-02290-L } \\ & \text { (P1-450L) } \end{aligned}$	ND	$1 / 0 \times 2(53.5 \times 2)$	4(21.2)	-	M8	60-8/22	$\begin{gathered} \text { 6.0-10.0/11.7 } \\ (12.0 / 12.5) \end{gathered}$
	LD					60-8/22-8	
	VLD	$2 / 0 \times 2(67.4 \times 2)$				70-8/22-8	
$\begin{aligned} & \text { P1-02950-L } \\ & \text { (P1-550L) } \end{aligned}$	ND	350kcmil(177)	3(26.7)	-	M10	180-10/38-8	$\begin{gathered} 10.0-12.0 / 11.7 \\ (16.5 / 12.5) \end{gathered}$
	LD	$3 / 0 \times 2(85.0 \times 2)$				80-10/38-8	
	VLD						

\diamond The wire size in the above table shows the designed values based on HIV cables (with thermal resistance of $75^{\circ} \mathrm{C}$).
\diamond When you connect the electric wire with the main circuit termina block, use the round type crimp terminals (for the UL standard) suitable for the use electric wire. Please put on pressure to the crimp terminals with a crimp tool that the crimp terminal maker recommends.
ঔ When applying the UL standard, refer to "1.5 Compliance to UL standards ".
Tightening torque is recommended "maximum value" in the above table.
-400V class

Applicable P1 inverter model P1-*****_*	Rating setting	Power line cable $\begin{gathered} \text { AWG(mm2) } \\ \text { R,S,T,U,V,W, } \\ \text { P,PD,N } \end{gathered}$	$\begin{aligned} & \text { Grounding } \\ & \text { cable } \\ & \text { AWG(mm2) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { External braking } \\ \text { resistor } \\ \text { between } \\ \text { P and RB } \\ \text { AWG(mm2) } \\ \hline \end{array}$	Power line cable Terminal screw size	Crimp terminal Power/Ground	Tightening torque($\mathrm{N} \cdot \mathrm{m}$) Power/Ground (maximum value)
$\begin{aligned} & \text { P1-00041-H } \\ & \text { (P1-007H) } \end{aligned}$	ND/LD/VLD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	$\begin{gathered} \hline 1.4 / 1.4 \\ (1.5 / 1.5) \\ \hline \end{gathered}$
$\begin{aligned} & \text { P1-00054-H } \\ & \text { (P1-015H) } \end{aligned}$	ND/LD/VLD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	$\begin{gathered} \hline 1.4 / 1.4 \\ (1.5 / 1.5) \\ \hline \end{gathered}$
$\begin{aligned} & \text { P1-00083-H } \\ & \text { (P1-022H) } \end{aligned}$	ND/LD/VLD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	$\begin{gathered} \hline 1.4 / 1.4 \\ (1.5 / 1.5) \\ \hline \end{gathered}$
$\begin{aligned} & \text { P1-00126-H } \\ & \text { (P1-037H) } \end{aligned}$	ND/LD	14(2.1)	14(2.1)	14(2.1)	M4	2-4/2-4	$\begin{gathered} \hline 1.4 / 1.4 \\ (1.5 / 1.5) \\ \hline \end{gathered}$
	VLD	12(3.3)	12(3.3)	12(3.3)		5.5-4/5.5-4	
$\begin{aligned} & \hline \text { P1-00175-H } \\ & \text { (P1-055H) } \end{aligned}$	ND/LD	12(3.3)	12(3.3)	12(3.3)	M5	5.5-5/5.5-5	$\begin{gathered} \hline 3.0 / 3.0 \\ (3.0 / 3.0) \\ \hline \end{gathered}$
	VLD	10(5.3)	10(5.3)	10(5.3)			
$\begin{aligned} & \hline \text { P1-00250-H } \\ & \text { (P1-075H) } \end{aligned}$	ND/LD	10(5.3)	10(5.3)	10(5.3)	M5	5.5-5/5.5-5	$\begin{gathered} \hline 3.0 / 3.0 \\ (3.0 / 3.0) \\ \hline \end{gathered}$
	VLD	8(8.4)	8(8.4)	8(8.4)		8-5/8-5	
$\begin{aligned} & \text { P1-00310-H } \\ & \text { (P1-110H) } \\ & \hline \end{aligned}$	ND/LD/VLD	8(8.4)	8(8.4)	8(8.4)	M6	8-6/8-6	$\begin{gathered} \hline 4.0 / 4.0 \\ (5.2 / 5.2) \end{gathered}$
$\begin{aligned} & \hline \text { P1-00400-H } \\ & \text { (P1-150H) } \end{aligned}$	ND/LD/VLD	8(8.4)	8(8.4)	8(8.4)	M6	8-6/8-6	$\begin{gathered} \hline 4.0 / 4.0 \\ (5.2 / 5.2) \\ \hline \end{gathered}$
$\begin{aligned} & \text { P1-00470-H } \\ & \text { (P1-185H) } \end{aligned}$	ND	8(8.4)	8(8.4)	8(8.4)		8-6/8-6	4.0/4.0 (5.2/5.2)
	LD	6(13.3)		6(13.3)		14-6/8-6	
	VLD				M6		
$\begin{aligned} & \text { P1-00620-H } \\ & \text { (P1-220H) } \end{aligned}$	ND	6(13.3)	8(8.4)	6(13.3)	M6	14-6/8-6	$\begin{gathered} 4.0 / 4.0 \\ (5.2 / 5.2) \end{gathered}$
	LD	4(21.2)		4(21.2)		22-6/8-6	
	VLD						
$\begin{aligned} & \text { P1-00770-H } \\ & \text { (P1-300H) } \end{aligned}$	ND	3(26.7)	6(13.3)	3(26.7)	M6	38-6/14-6	$\begin{gathered} 2.5 \sim 3.0 / 4.9 \\ (4.1 / 5.2) \end{gathered}$
	LD	2(33.6)		2(33.6)			
	VLD	1(42.4)		1(42.4)		60-6/14-6	
$\begin{aligned} & \text { P1-00930-H } \\ & \text { (P1-370H) } \end{aligned}$	ND/LD/VLD	1(42.4)	6(13.3)	1(42.4)	M8	60-8/14-8	$\begin{gathered} \hline 15.0 / 11.7 \\ (15.0 / 12.5) \end{gathered}$
$\begin{aligned} & \text { P1-01160-H } \\ & \text { (P1-450H) } \end{aligned}$	ND	1(42.4)	6(13.3)	-	M8	60-8/14-8	$\begin{gathered} 15.0 / 11.7 \\ (15.0 / 12.5) \end{gathered}$
	LD	1/0(53.5)					
	VLD						
$\begin{aligned} & \text { P1-01470-H } \\ & \text { (P1-550H) } \end{aligned}$	ND	1/0(53.5)	4(21.2)	-	M8	60-8/22-8	$\begin{gathered} 15.0 / 11.7 \\ (15.0 / 12.5) \end{gathered}$
	LD	2/0(67.4)				70-8/22-8	
	VLD	$1 / 0 \times 2(53.5 \times 2)$				60-8/22-8	$\begin{gathered} \hline 6.0 \sim 10.0 / 11.7 \\ (12.0 / 12.5) \\ \hline \end{gathered}$
$\begin{aligned} & \text { P1-01760-H } \\ & \text { (P1-750H) } \end{aligned}$	ND/LD/VLD	$1 / 0 \times 2(53.5 \times 2)$	4(21.2)	-	M10	60-10/22-8	$\begin{gathered} \hline 10.0 \sim 12.0 / 11.7 \\ (16.5 / 12.5) \\ \hline \end{gathered}$
$\begin{aligned} & \text { P1-02130-H } \\ & \text { (P1-900H) } \end{aligned}$	ND/LD	$1 / 0 \times 2(53.5 \times 2)$	3(26.7)	-	M10	60-10/38-8	$\begin{gathered} 10.0 \sim 12.0 / 11.7 \\ (16.5 / 12.5) \\ \hline \end{gathered}$
	VLD	$2 / 0 \times 2(67.4 \times 2)$				70-10/38-8	
$\begin{aligned} & \text { P1-02520-H } \\ & \text { (P1-1100H) } \end{aligned}$	ND/LD	$2 / 0 \times 2(67.4 \times 2)$	1(42.4)	-	M10	70-10/60-8	$\begin{gathered} 10.0 \sim 12.0 / 11.7 \\ (16.5 / 12.5) \\ \hline \end{gathered}$
	VLD	$3 / 0 \times 2(85.0 \times 2)$				80-10/60-8	
$\begin{aligned} & \text { P1-03160-H } \\ & \text { (P1-1320H) } \end{aligned}$	ND	$3 / 0 \times 2(85.0 \times 2)$	1(42.4)	-	M10	80-10/60-8	$\begin{gathered} 10.0 \sim 12.0 / 11.7 \\ (16.5 / 12.5) \end{gathered}$
	LD	$4 / 0 \times 2(107 \times 2)$				100-10/60-8	
	VLD	$250 \mathrm{kcmil} \times 2$ (127×2)				150-10/60-8	
$\begin{aligned} & \text { P1-03720-H } \\ & \text { (P1-1600H) } \end{aligned}$	ND	$3 / 0 \times 2(85.0 \times 2)$	2/0(67.4)	-	M12	80-12/70-12	$\begin{gathered} 15.5 \sim 18.5 / 39.6 \\ (25.5 / 42.0) \end{gathered}$
	LD	$4 / 0 \times 2(107 \times 2)$				150-12/70-12	
	VLD	$250 \mathrm{kcmil} \times 2$ (127×2)				150-12/70-12	
$\begin{aligned} & \text { P1-04320-H } \\ & \text { (P1-1850H) } \end{aligned}$	ND	$250 \mathrm{kcmil} \times 2$ (127×2)	2/0(67.4)	-	M12	150-12/70-12	$\begin{gathered} 15.5 \sim 18.5 / 39.6 \\ (25.5 / 42.0) \end{gathered}$
	LD	$250 \mathrm{kcmil} \times 2$ (127×2)				150-12/70-12	
	VLD	$300 \mathrm{kcmil} \times 2$ (152×2)				150-12/70-12	
$\begin{aligned} & \text { P1-04860-H } \\ & \text { (P1-2000H) } \end{aligned}$	ND	$250 \mathrm{kcmil} \times 2$ (127×2)	2/0(67.4)	-	M16	150-L16/70-12	$\begin{gathered} 37.0 / 39.6 \\ (55.5 / 42.0) \end{gathered}$
	LD	$300 \mathrm{kcmil} \times 2$ (152×2)				150-L16/70-12	
	VLD	$350 \mathrm{kcmil} \times 2$ (177×2)				180-L16/70-12	
$\begin{aligned} & \text { P1-05200-H } \\ & \text { (P1-2200H) } \end{aligned}$	ND	300kcmil $\times 2(152 \times 2)$	2/0(67.4)	-	M16	150-L16/70-12	$\begin{gathered} 37.0 / 39.6 \\ (55.5 / 42.0) \end{gathered}$
	LD	$350 \mathrm{kcmil} \times 2$ (177×2)				180-L16/70-12	
	VLD	400kcmil $\times 2$ (203×2)				200-L16/70-12	

\diamond The wire size in the above table shows the designed values based on HIV cable (with thermal resistance of $75^{\circ} \mathrm{C}$).
« When applying the UL standard, refer to "1.5 Compliance to UL standards ". Tightening torque is recommended "maximum value" in the above table.
$\triangleleft \quad$ When you connect the electric wire with the main circuit terminal block, use the round type crimp terminals (for the UL standard) suitable for the use electric wire. Please put on pressure to the crimp terminals with a crimp tool that the crimp terminal maker recommends.

2.7 Applicable circuit breaker

- 200V class
- For ND rating

$\begin{gathered} \text { Model } \\ \text { P1-*****_* } \\ \text { (P1-****) } \end{gathered}$	Applicable Motor (kW)	Applicable devices (Input Voltage 200 to 220V)							
		Without reactor (DCL or ALI)				With reactor (DCL or ALI)			
		Earth-leakage breaker (ELB)		Magnetic Contactor (MC)		Earth-leakage breaker (ELB)		Magnetic Contactor\qquad (MC)	
		Example model	Current Rate	AC-1	AC-3	Example model	Current Rate	AC-1	AC-3
P1-00044-L(P1-004L)	0.4	EB-30E	5	HS8	HS8	EB-30E	5	HS8	HS8
P1-00080-L(P1-007L)	0.75	EB-30E	10	HS8	HS8	EB-30E	5	HS8	HS8
P1-00104-L(P1-015L)	1.5	EB-30E	15	HS8	HS8	EB-30E	10	HS8	HS8
P1-00156-L(P1-022L)	2.2	EB-30E	20	HS8	HS8	EB-30E	15	HS8	HS8
P1-00228-L(P1-037L)	3.7	EB-30E	30	HS8	HS20	EB-30E	20	HS8	HS20
P1-00330-L(P1-055L)	5.5	EB-50E	40	HS20	HS25	EB-30E	30	HS8	HS20
P1-00460-L(P1-075L)	7.5	EB-50E	50	HS35	HS35	EB-50E	40	HS20	HS25
P1-00600-L(P1-110L)	11	EB-100E	75	HS50	H65C	EB-100E	60	HS35	HS50
P1-00800-L(P1-150L)	15	EXK125-C	125	H65C	H80C	EB-100E	100	HS50	H65C
P1-00930-L(P1-185L)	18.5	EXK125-C	125	H80C	H100C	EB-100E	100	HS50	H65C
P1-01240-L(P1-220L)	22	EXK225	150	H80C	H125C	EXK125-C	125	H65C	H80C
P1-01530-L(P1-300L)	30	EXK225	200	H125C	H150C	EXK225	150	H80C	H125C
P1-01850-L(P1-370L)	37	RXK250-S	250	H150C	H200C	EXK225	200	H100C	H125C
P1-02290-L(P1-450L)	45	EX400	300	H200C	H250C	EXK225	225	H125C	H150C
P1-02950-L(P1-550L)	55	EX400	400	H200C	H300C	EX400	300	H150C	H250C

- For LD/VLD rating

$\begin{gathered} \text { Model } \\ \text { P1-*****_* } \\ \text { (P1-****) } \end{gathered}$	Applicable Motor (kW)	Applicable devices(Input Voltage 200 to 220V)							
		Without reactor (DCL or ALI)				With reactor (DCL or ALI)			
		Earth-leakage breaker (ELB)		Magnetic Contactor (MC)		Earth-leakage breaker (ELB)		Magnetic Contactor (MC)	
		Example model	Current Rate	AC-1	AC-3	Example model	Current Rate	AC-1	AC-3
P1-00044-L(P1-004L)	0.75	EB-30E	10	HS8	HS8	EB-30E	5	HS8	HS8
P1-00080-L(P1-007L)	1.5	EB-30E	15	HS8	HS8	EB-30E	10	HS8	HS8
P1-00104-L(P1-015L)	2.2	EB-30E	20	HS8	HS8	EB-30E	15	HS8	HS8
P1-00156-L(P1-022L)	3.7	EB-30E	30	HS8	HS20	EB-30E	20	HS8	HS20
P1-00228-L(P1-037L)	5.5	EB-50E	40	HS20	HS25	EB-30E	30	HS8	HS20
P1-00330-L(P1-055L)	7.5	EB-50E	50	HS35	HS35	EB-50E	40	HS20	HS25
P1-00460-L(P1-075L)	11	EB-100E	75	HS50	H65C	EB-100E	60	HS35	HS50
P1-00600-L(P1-110L)	15	EXK125-C	125	H65C	H80C	EB-100E	100	HS50	H65C
P1-00800-L(P1-150L)	18.5	EXK125-C	125	H80C	H100C	EB-100E	100	HS50	H65C
P1-00930-L(P1-185L)	22	EXK225	150	H80C	H125C	EXK125-C	125	H65C	H80C
P1-01240-L(P1-220L)	30	EXK225	200	H125C	H150C	EXK225	150	H80C	H125C
P1-01530-L(P1-300L)	37	RXK250-S	250	H150C	H200C	EXK225	200	H100C	H125C
P1-01850-L(P1-370L)	45	EX400	300	H200C	H250C	EXK225	225	H125C	H150C
P1-02290-L(P1-450L)	55	EX400	400	H200C	H300C	EX400	300	H150C	H250C
P1-02950-L(P1-550L)	75	EX600B	500	H300C	H400C	EX400	400	H200C	H300C

\diamond If export to the U.S. or Canada or compliance with UL/cUL standards is required, wires and breakers described in UL / cUL should be used. For details, see "1.5 Compliance to UL standards".
\diamond Device model name on above table shows example selection. The device selection should be made in base on rated current, short circuit current capability and accordance to the local electrical legislation.
\diamond Applicable motor capacity is based on Hitachi 200 VAC, $60 \mathrm{~Hz}, 4$ pole IE3 motor.
\diamond Refer to the wire gauge table on chapter 2.6 for power line cable.

Call 1(800)985-6929 for Sales
Chapter 2
hitachiacdrive.com

400V class

- For ND rating

$\begin{gathered} \text { Model } \\ \text { P1-****** } \\ \text { (P1-****) } \end{gathered}$	Applicable Motor (kW)	Applicable devices (Input Voltage 400 to 440V)							
		Without reactor (DCL or ALI)				With reactor (DCL or ALI)			
		Earth-leakage breaker(ELB)		Magnetic Contactor(MC)		Earth-leakage breaker(ELB)		Magnetic Contactor(MC)	
		Example model	Current Rate	AC-1	AC-3	Example model	Current Rate	AC-1	AC-3
P1-00041-H(P1-007H)	0.75	EXK60-C	15	HS8	HS8	EXK60-C	15	HS8	HS8
P1-00054-H(P1-015H)	1.5	EXK60-C	15	HS8	HS8	EXK60-C	15	HS8	HS8
P1-00083-H(P1-022H)	2.2	EXK60-C	15	HS8	HS8	EXK60-C	15	HS8	HS8
P1-00126-H(P1-037H)	3.7	EXK60-C	15	HS8	HS10	EXK60-C	15	HS8	HS10
P1-00175-H(P1-055H)	5.5	EXK60-C	20	HS8	HS20	EXK60-C	15	HS8	HS20
P1-00250-H(P1-075H)	7.5	EXK60-C	30	HS8	HS25	EXK60-C	20	HS8	HS25
P1-00310-H(P1-110H)	11	EXK60-C	40	HS20	HS35	EXK60-C	30	HS20	HS35
P1-00400-H(P1-150H)	15	EXK60-C	50	HS25	HS50	EXK60-C	40	HS20	HS35
P1-00470-H(P1-185H)	18.5	EXK125-C	75	HS35	HS50	EXK60-C	50	HS35	HS50
P1-00620-H(P1-220H)	22	EXK125-C	75	HS50	H65C	EXK60-C	60	HS50	H65C
P1-00770-H(P1-300H)	30	EXK125-C	100	HS50	H80C	EXK125-C	75	HS50	H65C
P1-00930-H(P1-370H)	37	EXK125-C	125	H80C	H100C	EXK125-C	100	H65C	H80C
P1-01160-H(P1-450H)	45	EXK225	150	H80C	H125C	EXK125-C	125	H80C	H100C
P1-01470-H(P1-550H)	55	EXK225	200	H100C	H125C	EXK225	150	H100C	H125C
P1-01760-H(P1-750H)	75	RXK250-S	250	H150C	H200C	EXK225	200	H125C	H150C
P1-02130-H(P1-900H)	90	EX400	300	H200C	H250C	EXK225	225	H150C	H250C
P1-02520-H(P1-1100H)	110	EX400	400	H200C	H300C	EX400	300	H200C	H250C
P1-03160-H(P1-1320H)	132	EX600B	500	H250C	H300C	EX400	350	H250C	H300C
P1-03720-H(P1-1600H)	160	-		-	-	RX400B	400	H400C	H400C
P1-04320-H(P1-1850H)	185	-	-	-	,	RX600B	500	H400C	H600C
P1-04860-H(P1-2000H)	200	-	-	-	-	RX600B	500	H600C	H600C
P1-05200-H(P1-2200H)	220	,	,	,	-	RX600B	500	H600C	H600C

- For LD/VLD rating

$\begin{gathered} \text { Model } \\ \text { P1-*****-* } \\ \text { (P1-****) } \end{gathered}$	Applicable Motor (kW)	Applicable devices (Input Voltage 400 to 440V)							
		Without reactor (DCL or ALI)				With reactor (DCL or ALI)			
		Earth-leakage breaker(ELB)		Magnetic Contactor(MC)		Earth-leakage breaker(ELB)		Magnetic Contactor(MC)	
		Example model	Current Rate	AC-1	AC-3	Example model	Current Rate	AC-1	AC-3
P1-00041-H(P1-007H)	1.5	EXK60-C	15	HS8	HS8	EXK60-C	15	HS8	HS8
P1-00054-H(P1-015H)	2.2	EXK60-C	15	HS8	HS8	EXK60-C	15	HS8	HS8
P1-00083-H(P1-022H)	3.7	EXK60-C	15	HS8	HS10	EXK60-C	15	HS8	HS8
P1-00126-H(P1-037H)	5.5	EXK60-C	20	HS8	HS20	EXK60-C	15	HS8	HS20
P1-00175-H(P1-055H)	7.5	EXK60-C	30	HS8	HS25	EXK60-C	20	HS8	HS20
P1-00250-H(P1-075H)	11	EXK60-C	40	HS20	HS35	EXK60-C	30	HS20	HS25
P1-00310-H(P1-110H)	15	EXK60-C	50	HS25	HS50	EXK60-C	40	HS25	HS35
P1-00400-H(P1-150H)	18.5	EXK125-C	75	HS35	HS50	EXK60-C	50	HS35	HS50
P1-00470-H(P1-185H)	22	EXK125-C	75	HS50	H65C	EXK60-C	60	HS50	HS50
P1-00620-H(P1-220H)	30	EXK125-C	100	HS50	H80C	EXK125-C	75	HS50	H65C
P1-00770-H(P1-300H)	37	EXK125-C	125	H80C	H100C	EXK125-C	100	H80C	H80C
P1-00930-H(P1-370H)	45	EXK225	150	H80C	H125C	EXK125-C	125	H80C	H100C
P1-01160-H(P1-450H)	55	EXK225	200	H100C	H125C	EXK225	150	H100C	H125C
P1-01470-H(P1-550H)	75	EX400	250	H150C	H200C	EXK225	200	H150C	H200C
P1-01760-H(P1-750H)	90	EX400	300	H200C	H250C	EXK225	225	H200C	H200C
P1-02130-H(P1-900H)	110	EX400	400	H200C	H300C	EX400	300	H200C	H250C
P1-02520-H(P1-1100H)	132	EX600B	500	H250C	H300C	EX400	350	H250C	H300C
P1-03160-H(P1-1320H)	160	EX600B	600	H400C	H400C	EX400	400	H400C	H400C
P1-03720-H(P1-1600H)	185	-	-	-	-	RX600B	500	H400C	H600C
P1-04320-H(P1-1850H)	200	-	-	-	-	RX600B	500	H600C	H600C
P1-04860-H(P1-2000H)	220	-	,	-	,	RX600B	500	H600C	H600C
P1-05200-H(P1-2200H)	250	-			\ldots	RX600B	600	H600C	H600C

[^0]\& Refer to the wire size table in chapter 2.6.
\diamond Electrical endurance for AC-1 magnetic contactor is 500000 times, however, for emergency stop in motor operation will be only 25 times.

2.8 Chopper Braking Resistor

- SJ Series P1 has a built-in chopper braking circuit in model below. P1-00044-L (004L) to P1-01240-L (022L) P1-00041-H (007H) to P1-00930-H (370H)
- By using an optional braking resistor, permit to use for high regeneration load application such as lift or high speed load.

■200V class

$\begin{gathered} \text { Model } \\ \text { P1-******* } \\ \text { (P1-****) } \end{gathered}$	Appli cable motor (kW)	Min. Resis tor (Ω)	Resistor selection Ex. (Ω)	Braking Resistor			
				Model	Usage ratio (\%)	Short period capacity (kW)	Rated capacity (kW)
$\begin{gathered} \hline 00044-\mathrm{L} \\ (004 \mathrm{~L}) \end{gathered}$	0.4	50	180	SRB200-1	10	0.7	0.2
$\begin{gathered} \hline 00080-\mathrm{L} \\ (007 \mathrm{~L}) \\ \hline \end{gathered}$	0.75	50	100	SRB200-1	10	0.7	0.2
$\begin{gathered} \hline \text { 00104-L } \\ (015 \mathrm{~L}) \\ \hline \end{gathered}$	1.5	35	100	SRB200-2	7.5	1.25	0.2
$\begin{gathered} \hline 00156-\mathrm{L} \\ (022 \mathrm{~L}) \\ \hline \end{gathered}$	2.2	35	50	SRB300-1	7.5	2.5	0.3
$\begin{gathered} \hline 00228-\mathrm{L} \\ (037 \mathrm{~L}) \end{gathered}$	3.7	35	35	SRB400-1	7.5	3.6	0.4
$\begin{gathered} \hline 00330-\mathrm{L} \\ (055 \mathrm{~L}) \\ \hline \end{gathered}$	5.5	16	17	RB3	10	7.7	1.2
$\begin{gathered} 00460-\mathrm{L} \\ (075 \mathrm{~L}) \\ \hline \end{gathered}$	7.5	10	17	RB3	10	7.7	1.2
$\begin{gathered} \text { 00600-L } \\ (110 \mathrm{~L}) \end{gathered}$	11	10	11.7	RB2 $\times 3$ parallel	10	11.4	1.8
$\begin{gathered} \hline \text { 00800-L } \\ (150 \mathrm{~L}) \\ \hline \end{gathered}$	15	7.5	8.5	$\begin{aligned} & \hline \text { RB3 } \times 2 \\ & \text { parallel } \\ & \hline \end{aligned}$	10	15.4	2.4
$\begin{gathered} \hline \text { 00930-L } \\ (185 \mathrm{~L}) \\ \hline \end{gathered}$	18.5	7.5	8.5	RB3 $\times 2$ parallel	10	15.4	2.4
$\begin{aligned} & \hline \text { O1240-L } \\ & (220 \mathrm{~L}) \end{aligned}$	22	5	5.7	$\begin{aligned} & \hline \text { RB3 } \times 3 \\ & \text { parallel } \\ & \hline \end{aligned}$	10	23.1	3.6

\diamond When using regenerative resistor SRB series and RB series in 400 V class, be sure to use two in series because of the restriction of withstanding voltage of the resistor.

Example: In the case of RB2 $\times 2$ series $\times 2$ parallel, a total of 4 RB2s are required.

- SJ Series P1 can offer when desired a built-in chopper braking circuit in models below. P1-01160-H (450H) to P1-01470-H (550H)
- Using optional braking unit or regenerative unit, permit to use on high regenerative load application even for models without built-in chopper braking circuit.
- The table below shows an example selection of braking resistor to output 100% of braking torque for each motor rating on list.

■400V

$\begin{gathered} \text { Model } \\ \text { P1-******* } \\ \text { (P1-****) } \end{gathered}$	Appli cable motor (kW)	Min. Resis tor (Ω)	Resistor selection Ex. (Ω)	Braking Resistor			
				Model	Usage ratio (\%)	Short period capacity (kW)	Rated capacity (kW)
$\begin{gathered} 00041-\mathrm{H} \\ (007 \mathrm{H}) \end{gathered}$	0.75	100	360	$\begin{gathered} \hline \text { SRB200-1 } \\ \times 2 \text { series } \end{gathered}$	10	1.4	0.4
$\begin{aligned} & \hline 00054-\mathrm{H} \\ & (\mathrm{O} 5 \mathrm{H}) \end{aligned}$	1.5	100	100	$\begin{gathered} \hline \text { SRB200-1 } \\ \times 2 \text { series } \end{gathered}$	10	1.4	0.4
$\begin{gathered} 00083-\mathrm{H} \\ (022 \mathrm{H}) \\ \hline \end{gathered}$	2.2	100	100	$\begin{gathered} \hline \text { SRB200-2 } \\ \times 2 \text { series } \\ \hline \end{gathered}$	7.5	2.5	0.4
$\begin{gathered} \hline 00126-\mathrm{H} \\ (037 \mathrm{H}) \end{gathered}$	3.7	70	100	$\begin{gathered} \hline \text { SRB300-1 } \\ \times 2 \text { series } \\ \hline \end{gathered}$	7.5	5	0.6
$\begin{gathered} \hline 00175-\mathrm{H} \\ (055 \mathrm{H}) \\ \hline \end{gathered}$	5.5	70	100	$\begin{gathered} \hline \text { SRB300-1 } \\ \times 2 \text { series } \end{gathered}$	7.5	5	0.6
$\begin{gathered} 00250-\mathrm{H} \\ (075 \mathrm{H}) \end{gathered}$	7.5	35	70	$\begin{gathered} \hline \text { SRB400-1 } \\ \times 2 \text { series } \end{gathered}$	7.5	7.2	0.8
$\begin{aligned} & \text { OO310-H } \\ & (110 \mathrm{H}) \end{aligned}$	11	35	50	$\begin{array}{\|c\|} \hline \text { RB1 } \\ \times 2 \text { series } \\ \times 2 \text { parallel } \end{array}$	10	10.4	1.6
$\begin{aligned} & \text { OO400-H } \\ & (150 \mathrm{H}) \end{aligned}$	15	24	35	$\begin{array}{\|c\|} \hline \text { RB2 } \\ \times 2 \text { series } \\ \times 2 \text { parallel } \\ \hline \end{array}$	10	15.2	2.4
$\begin{aligned} & \text { 00470-H } \\ & (185 \mathrm{H}) \end{aligned}$	18.5	24	35	$\begin{array}{\|c\|} \hline \text { RB2 } \\ \times 2 \text { series } \\ \times 2 \text { parallel } \\ \hline \end{array}$	10	15.2	2.4
$\begin{aligned} & \text { 00620-H } \\ & (220 \mathrm{H}) \end{aligned}$	22	20	25	RB1 $\times 2$ series $\times 4$ parallel	10	20.8	3.2
$\begin{aligned} & \text { OO770-H } \\ & (300 \mathrm{H}) \end{aligned}$	30	15	17	RB3 $\times 2$ series $\times 2$ parallel	10	30.8	4.8
$\begin{aligned} & \text { OO930-H } \\ & (370 \mathrm{H}) \end{aligned}$	37	15	17	RB3 $\times 2$ series $\times 2$ parallel	10	30.8	4.8
$\begin{aligned} & \text { 01160-H } \\ & (450 \mathrm{H}) \end{aligned}$	45	10	10	$\begin{gathered} \text { CA-KB } \\ (10 \Omega 5 \text { unit }) \end{gathered}$	20	45	17
$\begin{aligned} & \hline 01470-\mathrm{H} \\ & (550 \mathrm{H}) \end{aligned}$	55	10	10	$\begin{array}{\|c} \hline \text { CA-KB } \\ \text { (10 } 25 \text { unit }) \end{array}$	20	45	17

sales@hitachiacdrive.com Installation and Wiring

2.9 Wiring to the main circuit terminal block

\triangleWhen J51 connector is removed, charge lamp doesn't indicate RO-TO status. Make sure that power is off and care for safety. For own safety, make sure to power off before handling the inverter. The charge lamp doesn't light up even with 24 V power supply only.

hitachiacdrive.com
sales@hitachiacdrive.com
sales@hitachiacdrive.com Installation and Wiring

\diamond Switch the short circuit connector to enable/disable the EMC filter.

\triangleleft Switch the short circuit bar to enable or disable the EMC filter as shown below.

Model P1- $* * * * *-*(P 1-* * * *)$
400 V class: $00770-\mathrm{H}(300 \mathrm{H})$

[^1]
\diamond For the switching method of EMC filter, see the lower section of this page.

\diamond For the switching method of EMC filter, see the lower left section of this page.
\& For the switching method of EMC filter, see the lower left section of this page.
s Switching method of EMC filter
Switch the short circuit bar to enable/disable the EMC filter.

Disable Switching(screw) Enable

Model P1- ${ }^{* * * * *-*(P 1-* * * *)}$
400V class: $01760-\mathrm{H}(750 \mathrm{H}), \mathbf{0 1 4 7 0 - H (9 0 0 H)}$

$\triangleleft \quad$ For the switching method of EMC filter, see the lower section of this page.

\diamond For the switching method of EMC filter, see the lower left section of this page.

\diamond For the switching method of EMC filter, see the left section of this page.

Enable

\diamond For the switching method of EMC filter, see the lower left section of this page.
\diamond Switching method of EMC filter
Switch the short circuit bar to enable/disable the EMC filter.

Disable Switching(screw) Enable

2.10 Wiring of the control circuit

Recommended terminals for wiring

- The following ferrule terminals are recommended for signal cable for easy wiring and improving reliability of connectivity.

Ferrule terminal with sleeves

Power cable size $\mathrm{mm}^{2} \text { (AWG) }$	Ferrule terminal model*	L1 [mm]	L2 [mm]	$\phi \mathrm{d}$ [mm]	$\phi \mathrm{D}$ [mm]	
0.25 (24)	AI 0,25-8YE	8	12.5	0.8	2.0	
0.34 (22)	AI 0,34-8TQ	8	12.5	0.8	2.0	
0.5 (20)	AI 0,5-8WH	8	14	1.1	2.5	
0.75 (18)	AI 0,75-8GY	8	14	1.3	2.8	

*) Manufacturer: Phoenix Contact
Crimping tool: CRIMPFOX UD 6-4 or CRIMPFOX ZA 3

- Wiring procedure

1. Push the gray part on the control circuit terminal block into the socket with a slotted screwdriver (with a wide of 2.5 mm or less). (Insertion hole will open)
2. Insert the main circuit terminal block or ferrule terminal into the wire insertion hole (round) while pressing the gray part with a slotted screwdriver.
3. The wire is connected to the circuit when release the screw driver.

- Even for pulling out the wire from the socket, press the gray part with a slotted screwdriver (the insertion hole will be opened while pressing).

Push the gray part into Insert the wire the socket with a slotted screwdriver

The wire is connected to the circuit when release the screw driver.

2.11 Control circuit wiring section

■ Input terminals

- All COMs have the same electric potential.
- Change SW5 to external power source (EX) to connect the power source between Input terminals 1 to 9 , A or B, and COM.
- Sink or source logic of the input terminal is switched by SW6.
(Wiring example)

- [] it means factory default settings.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \& Terminal label \& Terminal name \& Description \& Electric characteristics \\
\hline \multirow{3}{*}{} \& \multirow{3}{*}{} \& U
0
0
0 \& \[
\begin{gathered}
9,8, \\
7,6, \\
5,4, \\
3,2, \\
1 \\
\hline
\end{gathered}
\] \& Input terminal \& \begin{tabular}{l}
Each terminal can select input terminal functions by parameter setting. \\
Switch the SINK / SRC of SW6 to select the sink logic and source logic.
\end{tabular} \& \begin{tabular}{l}
- Max. allowable voltage 27 VDC \\
- Load current \(5.6 \mathrm{~mA}(\) at 27 VDC) \\
Voltage between each input and the COM terminal: \\
When using an external power supply:
\end{tabular} \\
\hline \& \& \[
\frac{\mathbb{N}}{\beth}
\] \& A

B \& Pulse input-A

Pulse input-B \& \begin{tabular}{l}
When [CA-90] is set to 00, A and B terminals can be used as input terminals.

Each terminal can select input terminal functions by parameter setting.

When [CA-90] is not set to 00, they are used as terminals for pulse string input.

The maximum input pulse is 32 kpps

 \&

- ON voltage Min. 18 VDC

- OFF voltage Max. 3 VDC

When using the internal power supply:

- ON voltage Max. 3 VDC

- OFF voltage Min. 18 VDC

- Maximum 32 kpps pulse input (When terminal A and B function is pulse train input A / B)
\end{tabular}

\hline \& \& ¢ \& COM \& Input (common) \& This is a common terminal for digital input terminals ($1,2,3,4,5,6,7,8,9, A$ and B). Three COM terminals are available. \&

\hline
\end{tabular}

- Terminal's default function ([symbol: setting No.]) [RS:028] Reset
- Reset at every trip.
[SCHG:015] Main/Sub speed reference change
- Change to the main speed command [AA101](OFF) or sub-speed command[AA102](ON).
[JG:029] Jogging
- Run at a frequency of [AG-20] upon receipt of the RUN command by [JG]ON.
[FRS:032] Free run stop
- [FRS]ON sets the motor in a free-run state.
[2CH:031] 2-stage acceleration/deceleration
- [2CH]ON enables acceleration/deceleration time-2[AC124][AC126].
[FW:001]Forward rotation and [RV:002]Reverse rotation

Forward	Reverse	Description
OFF	OFF	No command
ON	OFF	Forward rotation RUN command.
OFF	ON	Reverse rotation RUN command.
ON	ON	No command (inconsistent logic)

[CF1:003]Multispeed-1 and [CF2:004]Multispeed-2 commands

Multispeed-1 CF1	Multispee d-2 CF2	Description
OFF	OFF	The set frequency source is enabled.
ON	OFF	The frequency source of [Ab-11] is enabled.
OFF	ON	The frequency source of [Ab-12] is enabled.
ON	ON	The frequency source of [Ab-13] is enabled.

*) Setting CF3 and 4 allows you to set up to 16 -speed.
[USP:034] unattended start protection

- In a [USP]ON state, if an RUN command has been input before the power supply is ON, Trip[E013] is issued.
[EXT:033] External fault
- [EXT]ON issues Trip[E012].

-Output terminals
 (Wiring example)

			Terminal label	Terminal name	Description	Electric characteristics
			$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$	Output terminal	Terminal functions are selectable according to the parameter settings for each terminal. This is available for both SINK and Source logics.	Open collector output Between each terminal and CM2 - Voltage drop when turned on: 4 V or less - Max. allowable voltage 27 VDC - Max. allowable current 50 mA
			CM2	Output (common)	This is a common terminal for output terminals 11 to 15.	
			$\begin{aligned} & 16 A \\ & 16 C \end{aligned}$	1a relay terminal	Relays for A contact output	Maximum contact capacity - 250 VAC, 2 A(resistance) - 250 VAC, 1 A(inductive load) (Minimum contact capacity) - 1 VDC, 1 mA
		$\frac{\underset{\sim}{\otimes}}{\stackrel{\sim}{\otimes}}$	ALO AL1 AL2	1c relay terminal	Relays for C contact output	Maximum contact capacity AL1/ALO: - 250 VAC, 2 A(resistance) - 250 VAC, 0.2 A(inductive load) AL2/ALO: - 250 VAC, 1 A(resistance) - 250 VAC, 0.2 A(inductive load) Minimum contact capacity (common) - 100 VAC, 10 mA - 5 VDC, 100 mA

- Terminal's default function
[RUN:001] Running
- Turns ON during operation (PWM output).
[FA1:002] Constant-frequency reached
- Turns ON when the output frequency reaches the control frequency.
[FA2:003] Set frequency overreached
- Turns ON when the output frequency reaches the control frequency [CE-10] to [CE-13].

[IRDY:007] inverter ready

- Turns ON when is ready for operation.
[OL:035] Overload notice advance signal
- Turns ON when the current exceeds the overload warning level.
[AL:017]Operation
- In case of [CC-17]=00 (factory setting)

Power supply	Status	ALO-AL1	ALO-AL2
ON	Normal operation	Open	Closed
ON	Tripping	Closed	Open
OFF	-	Open	Closed

- In case of [CC-17]=01

Power supply	Status	ALO-AL1	ALO-AL2
ON	Normal operation	Closed	Open
ON	Tripping	Open	Closed
OFF	-	Open	Closed

(*1):Ver2.01 or older, the initial value of relay output 16 is 040 [ZS] [ZS:040] 0 Hz detection signal.

- Turns ON when the output frequency goes below the $0-\mathrm{Hz}$ detection value level [CE-33].
－Analog input／output
（Wiring example）

－When variable resistor is connected on H－Ai1－L terminal，voltage input is given to inverter，Sw1 for analog input 1 （Ai1）is to be set on ＂voltage＂side therefore．
－If a frequency meter connected in left example is current type（4 to 20 mA ），set SW3 for analog output 1 （Ao1）as current output． NOTE）Refer to chapter 3.7 to 3.13 for adjustment example．

		Terminal label	Terminal name	Description	Electric characteristics
		L	COM for analog power supply	COM terminals for analog input terminals（Ai1，Ai2，Ai3）and analog output terminals（Ao1，Ao2）．Two L terminals are available．	
		H	Speed setting power supply	10 VDC power supply．Used for voltage input with analog input terminals（Ai1，Ai2，Ai3）using a variable resister．	Allowable load current is 20 mA or less
		Ai1	Analog input terminal 1 （Voltage／current selector SW1）	Either Ai1 or Ai2 can be used by switching the selector	For voltage input： －Input impedance Approx．10k Ω －Allowable input voltage－0．3 VDC to 12 V
	$\begin{aligned} & \stackrel{\rightharpoonup}{訁} \\ & . \frac{1}{\leftrightarrows} \\ & 0.0 \\ & \frac{0}{10} \\ & \frac{c}{c} \end{aligned}$	Ai2	Analog input terminal 2 （Voltage／current selector SW2）	Used as speed input and feedback input．	For current input： －Input impedance Approx． 100Ω －Max．allowable input current 24 mA
		Ai3	Analog input terminal 3	DC－10 to 10 V voltage input is available． Used as speed input and feedback input．	Voltage input only： －Input impedance Approx．10k Ω －Allowable voltage input－12 VDC to 12 V
		Ao1	Analog output terminal 1 （Voltage／current selector SW3）		For voltage output： －Max．allowable output current 2 mA －Output voltage accuracy $\pm 10 \%$ （Ambient temperature： 25 ± 10
	$\begin{aligned} & ⿳ 亠 口 了 \\ & 0 . \\ & \frac{0}{10} \\ & \frac{0}{4} \end{aligned}$	Ao2	Analog output terminal 2 （Voltage／current selector SW4）	Either Ao1 or Ao2 can be used as an output for inverter monitoring data by switching the selector switch to DCO to 10 V voltage output or DCO to 20 m A current output．	degrees C） For current output ： －Allowable load impedance 250Ω or less －Output current accuracy $\pm 20 \%$ （Ambient temperature： 25 ± 10 degrees C）

■External thermistor
Control circuit terminal
（Wiring example）

－Twist the cables connected from a thermistor to the TH terminal only between $\mathrm{TH}+$ and TH －，and separate the twisted cables from other cables．
－Since very low current flows through the cables connected to the thermistor，separate the cables from those（power line cables） connected to the main circuit．
－The length of the cables connected to the thermistor must be 20 m or less．

		Terminal label	Terminal name	Description	Electric characteristics
		TH＋	External thermistor input	Connect to an external thermistor to make the inverter trip if an abnormal temperature is detected． Connect the thermistor to TH＋and TH－．The impedance to detect temperature errors can be adjusted within the range 0Ω to	DCO to 5V ［Input circuit］
		TH－	Common terminal for external thermistor input	$10,000 \Omega .$ ［Recommended thermistor properties］ Allowable rated power： 100 mW or more Impedance at temperature error： $3 \mathrm{k} \Omega$	

■Functional safety terminals

\triangleleft To use this function, refer to the P1 User's Guide and the separate "Safety function Guide"(NT2512*X).

Terminal label	Terminal name
P24S	24V output power source terminal
CMS	COM terminal for functional safety
STC	Logic switching terminal
ST1	STO input1
ST2	STO input2
ED+	Output terminal for monitoring
ED-	Output COM terminal for monitoring

Note : Do not connect P24S, CMS, STC, ST1, ST2 to other control circuit terminals.

			Terminal label	Terminal name	Description	Electric characteristics
	$\begin{aligned} & \stackrel{~}{\partial} \\ & \text { in } \\ & \vdots \\ & \sum_{u}^{n} \end{aligned}$		FM	Digital monitor (voltage)	Digital monitor output is selectable from PWM output with 6.4 ms cycle or pulse output with a variable duty cycle of approx. 50%.	Pulse train output DCO to 10 V - Max. allowable output current 1.2 mA - Maximum frequency 3.60 kHz
			CM1	COM for digital monitor	This is a common terminal for digital monitor. This is also used as OV reference potential for P24.	

-Serial communication

Control circuit terminal

(Wiring example)

- SP and SN with the same name are internally connected, which are available for a plurality of wiring.
- For the use of Modbus communication, Refer to P1 User's Guide for details.

Connect CM1
Into the SG (signal ground) of external devices,

For enabling the termination resistor, short-circuit between RP and SN.

		Terminal label	Terminal name	Description	Electric characteristics
		$\begin{gathered} \mathrm{SP} \\ \mathrm{SN} \\ \mathrm{RP} \\ \text { (CM1) } \end{gathered}$	MODBUS terminal (RS-485)	SP terminal: RS-485 differential(+) signal SN terminal: RS-485 differential(-) signal RP terminal: Connect to SP through a termination resistor CM1 terminal: Connect to the signal ground of external communication devices. There are two SP and two SN terminals, which are connected internally. The maximum baud rate is 115.2 kbps .	Termination resistor (120 $)$ integrated Enabled: RP-SN shorted Disabled: RP-SN opened

■ 24 V power supply input/output

(Wiring example)
Control circuit terminal

		Terminal label	Terminal name	Description	Electric characteristics
	$\begin{aligned} & \stackrel{3}{3} \\ & \stackrel{0}{I} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	P24	24 VDC output power source terminal	This terminal supplies 24 VDC power for contact signals.	Max. output 100mA
		P+	Terminal for external 24 VDC input (24 VDC)	Input external 24 VDC power supply to the inverter. 24 VDC power supply input permit to change parameter settings and perform optional communication operations without control power supply.	Allowable input voltage $\text { DC } 24 \mathrm{~V} \pm 10 \%$ Max. allowable current 1 A
		P-	Terminal for external 24 VDC input (0 VDC)		

2.12 Residual risk

Parts subject to residual risk

Please check for any residual risk upon completion of the installation before power on.
\square Residual risk checklist No.

Target section	Name of part	§ DANGER	@ WARNING	CAUTION
(A)	Main circuit terminal block	8,10		
(B)	Heat sink	4		1
(C)	Control circuit terminal block	11		
(D)	Motor connected with the inverter and wiring to the motor	12,13		
-	Unspecified parts	$9,14,15$		$2,3,5,6,7$

Residual risk checklist

No.	$\begin{gathered} \text { Operation } \\ \text { stage } \\ \hline \end{gathered}$	Work	Target section	Residual risk	Details of harm	Protective measure	$\sqrt{ }$
1	Installation	Installation	(B)	Caution	Damage caused by careless transport	Do not drop the product. Do not carry the inverter in a manner that applies force to the cover or operator keypad.	\square
2	Installation	Installation	-	Caution	Reduction of component life due to use in a location exposed to direct sunlight or at a temperature outside the specification range.	Check that ambient temperature is within the standard specification range in the whole year by means of cooling and ventilation.	\square
3	Installation	Installation	-	Caution	Failure due to short circuit caused by using in a location which humidity and condensation are out of standard range described in specification.	Check that ambient temperature is within the standard specification range in the whole year by means of cooling and ventilation. Otherwise, install the product in a location free from condensation.	\square
4	Installation	Installation	(B)	DANGER	The cooling fin that is heated to exceed $150^{\circ} \mathrm{C}$ sets fire to a flammable wall.	Install the inverter on an inflammable metal wall.	\square
5	Installation	Installation	-	Caution	Component failure due to entry of dust, corrosive gas, or other substances.	Install the inverter inside a totally enclosed panel.	\square
6	Installation	Installation	-	Caution	Reduction of a component life due to degradation of cooling capability by horizontal installation.	Install it vertically.	\square
7	Installation	Installation	-	Caution	When the fin of the inverter is installed outside of cabinet, the cooling fan fails due to droplet, oil mist, etc.	When installing the fin of inverter outside the cabinet, install it in a location free from droplet, oil mist, etc.	\square
8	Maintenance for installation	Electrical connections	(A)	DANGER	Arc flew out due to screws that are loosened by vibration, and catch fire to the internal components.	Check screws are appropriately tightened on a regular basis.	\square
9	Maintenance for installation	Electrical connections	-	DANGER	Arc flew out due to screws that are loosened by vibration, and catch fire to combustibles.	Check screws are appropriately tightened on a regular basis. Do not place flammable materials near the installed inverter.	\square
10	Maintenance for use	Wiring Inspection	(A)	DANGER	When the cover is removed, electric shock is caused in a high-voltage section.	Do not remove the cover when power is supplied. After power is turned off, wait 10 minutes or more to perform working.	\square
11	Maintenance for use	Wiring Inspection	(C)	DANGER	When the operator removes the cover, electric shock is caused when a tool touches a high-voltage section.	Do not remove the cover when power is supplied. After power is turned off, wait 10 minutes or more to perform working.	\square

Installation, wiring, and setting work need to be performed by specialized technicians.

No.	$\begin{gathered} \text { Operation } \\ \text { stage } \end{gathered}$	Work	Target section	Residual risk	Details of harm	Protective measure	$\sqrt{ }$
$\begin{aligned} & 12 \\ & \text { (a) } \end{aligned}$	Installation	Electrical connections	(D)	DANGER	Due to long wiring length, the insulation of the motor degraded by surge, which eventually burns the motor.	If the wiring length exceeds 20 m , shorten the motor wiring length. Or install the optional LCR filter and output side AC reactor.	\square
$\begin{aligned} & 12 \\ & \text { (b) } \end{aligned}$	Installation	Electrical connections	(D)	DANGER	By a motor is connected to the different voltage class inverter, insulation of the motor degraded, which eventually burns the motor.	Match the voltage class of inverter and that of motor.	\square
$\begin{aligned} & 12 \\ & \text { (c) } \end{aligned}$	Installation	Electrical connections	(D)	DANGER	Due to unstable output caused by imbalance of power supply voltage, undervoltage, extreme voltage drop, aging of motor, the motor burns, and eventually the inverter fails.	Check the receiving voltage of inverter, power receiving method, and power supply capacity are appropriate.	\square
$\begin{aligned} & 12 \\ & \text { (d) } \end{aligned}$	Maintenance for use	Wiring Inspection	(D)	DANGER	The short circuit failure caused by degradation of motor insulation, cracking of aged wires, etc., causes phase loss on inverter output, motor cable, and motor. Driving the inverter in such a condition burns the motor, and eventually the inverter fails.	Check there is no phase loss by inspection.	\square
						```Set appropriate values for parameters related to motor electronic thermal function [bC110] to [bC225].```	
$\begin{aligned} & 12 \\ & \text { (e) } \end{aligned}$	Installation Use	Setting	(D)	DANGER	By performing inappropriate parameter settings, high current flows in the motor, causing it to burn.	Set appropriate values for the settings of base frequency, rated motor voltage, motor constant, load type, DC braking and control mode.   (representative parameters)   Motor-related parameters:   IM : [Hb102] to [Hb118]   SM (PMM): [Hd102] to [Hd118]   Control mode: [AA121]   Lode type selection: [Ub-03]   DC braking: [AF101] to [AF109]	$\square$
13	Use	Operation	(D)	DANGER	The stopped motor automatically starts running.	To restart the motor after stopping it by a function, define it in the system.	$\square$
14	General	General	-	DANGER	Damage and injury caused by hidden risks.	Perform risk assessment on the system, and check that the fail safe function is incorporated into the system.	$\square$
15	General	General	-	DANGER	Damage and injury caused by failure to obtain additional information concerning risks.	Obtain the latest version of User's Guide so that necessary information can be checked. Communicate information to the end users as necessary.	$\square$

* Installation, wiring, and setting work need to be performed by specialized technicians.
* When using the input terminal 024[SET] function, also check the second settings.


## Chapter 3

## Operation Setting and Examples of I/O Adjustment

This chapter describes basic settings, example of frequency reference destination selection and setting, example of RUN command destination selection and setting and example of analog input/output adjustment.

Basic settings 1

### 3.1 Set the load rating

- Select [Ub-03] load specification selection on the parameter setting screen.

- When [Ub-03] is changed, the parameters set for the current are automatically adjusted in proportion to the changed rated current, and the set values are changed.
- Therefore, Please set [Ub-03] at first because of the rated current value will be changed in overload restriction, electronic thermal or warning functions.
- Parameter

Parameter	Details	Setting data
[Ub-03]	Load type   selection.	00: Very Low Duty (VLD)   01: Low Duty (LD)   02: Normal Duty (ND)

${ }^{*}$ ) The underlined value is set by default.

See "Chapter 4 Settings" for detailed operating instructions

## - Basic settings 2

### 3.2 Set the motor data

- Set the parameters listed in the table below on the parameter setting screen according to the motor you use (e.g. induction motor and permanent-magnet motor).

- Parameter
- Induction motor (IM)

Parameter	Details	Setting data
[AA121]	Control mode selection, 1st-motor	00: [V/f] Fixed torque characteristics (IM), etc.
[Hb102]	Async. Motor capacity setting, 1st-motor	0.01 to 160.00 (kW)   (In the case of P1-1600H or more 0.01 to $500.00(\mathrm{~kW})$ )
[Hb103]	Async. Motor number of poles setting, 1st-motor	2 to 48 (poles)
[Hb104]	Async. Motor base frequency setting ,1st-motor	10.00 to 590.00 (Hz)
[Hb105]	Async. Motor maximum frequency setting ,1st-motor	10.00 to 590.00 (Hz)
[Hb106]	Async. Motor rated voltage, 1st-motor	1 to 1000 (V)
[Hb108]	Async. Motor rated current, 1st-motor	0.01 to 10000.00 (A)

- Synchronous motor (permanent-magnet motor) (SM(PMM))

Parameter	Details	Setting data
[AA121]	Control mode selection, 1st-motor	11: Synchronous start type sensorless vector control(SM/PMM)) , etc
[Hd102]	Sync. Motor capacity setting, 1st-motor	0.01 to 160.00 (kW)   (In the case of P1-1600H or more 0.01 to $500.00(\mathrm{~kW})$ )
[Hd103]	Sync. Motor number of poles setting, 1st-motor	2 to 48 (poles)
[Hd104]	Sync. Base frequency setting, 1st-motor	10.00 to 590.00 (Hz)
[Hd105]	Sync. Maximum frequency setting, 1st-motor	10.00 to 590.00 (Hz)
[Hd106]	Sync. Motor rated voltage, 1st-motor	1 to 1000 (V)
[Hd108]	Sync. Motor rated current, 1st-motor	0.01 to 10000.00 (A)

Frequency source 1

### 3.3 Frequency setting from keypad

- Select [AA101] = 07 Frequency source from parameter setting screen.
- Changing frequency setting from each source
(1) [FA-01] for frequency setting from keypad or
(2) [Ab110] for frequency setting at multispeed profile.

Eg.) For [FA-01]


- Frequency reference
- Change the frequency source setting [Ab110] of
" Multi-speed 0 setting, 1st-motor" by using the up and down arrow keys.
- Parameter

Parameter	Details	Setting   data
$[$ AA101]	Main speed input source   selection, 1st-motor	07
$[$ FA-01]*)	Main speed reference monitor	0.00 Hz
$[\mathrm{Ab} 110]^{*}$ )	Multi-speed 0 setting,   1st-motor	0.00 Hz

${ }^{*}$ ) While [AA101] = 07, a change made in either [FA-01] or [Ab110] will be automatically reflected in the other. When no change can be made or is reflected in [FA-01], the operator keypad is not specified as a command source by the terminal function or [AA101].

- The frequency setting value should be set to other than 0.00 .
- When the main speed command can be set from the keypad, the output terminal 010[FREF] turns ON.

Run command source 1

### 3.4 Run using the operator keypad

- Select [AA111] = 02:RUNKey(Keypad) on the parameter setting from keypad.

- Run/stop command

Press the RUN key and STOP key on the operator keypad to start and stop the inverter, respectively.

- Parameter

Parameter	Details	Setting   data
$[$ AA111]	RUN command input source   selection,1st-motor	02

-When the RUN command can be input from the keypad, the output terminal 011[REF] RUN command panel turns ON.

- In addition, when the RUN command is input, not limited to the RUN key on the keypad, the output terminal 031[FR] starting contact signall turns ON.


## Frequency source 2

### 3.5 Multispeed terminals command

- While multispeed command is off, the speed command will follow the parameter setting [AA101].
- To use multispeed 0, select [AA101] = 07 Parameter Setting

Input terminals


- Frequency reference source
- Change the frequency reference by turning ON/OFF from multispeed input terminals 003[CF1] and 004[CF2].
- Parameter

Parameter	Details	Setting   data
[AA101]	Main speed input source   selection, 1st-motor	07
[FA-01]*1)	Main speed reference monitor	0.00 Hz
$[$ Ab110]   $* 1)$	Multi-speed 0 setting, 1st-motor   ([CF1]OFF/[CF2]OFF)	0.00 Hz
$[A b-11]$   $* 2)$	Multi-speed 1 setting   ([CF1]ON/[CF2]OFF)	0.00 Hz
$[A b-12]$   $* 2)$	Multi-speed 2 setting   ([CF1]OFF/[CF2]ON)	0.00 Hz
$[A b-13]$   $* 2)$	Multi-speed 3 setting   ([CF1]ON/[CF2]ON)	0.00 Hz
$[C A-06]$	Input terminal [6] function([CF1])	003
[CA-07]	Input terminal [7] function([CF2])	004

*1) While [AA101] = 07, a change made in either [FA-01] or [Ab110] will be automatically reflected in the other. When no change can be made nor is reflected in [FA-01], the operator keypad is not specified as a command source by the terminal function or [AA101].
*2) Set the frequency value for multispeed selection.

Run command source 2

### 3.6 Operate using FW/RV terminal

- Select [AA111] = 00 [FW]/[RV] terminal from parameter setting screen.

- Run/stop command
- Run or stop by turning either input termmminal 001[FW] or input terminal 002[RV] ON/OFF.
- Parameter

Paramet   er	Details	Setting   data
[AA111]	RUN command input source   selection, 1st-motor.   (select 00([FW]/[RV] terminal)	00
[CA-09]	Input terminal [9] function   (Set to [FW])	001
[CA-08]	Input terminal [8] function   (Set to [RV])	002

## Frequency source 3

### 3.7 Potentiometer frequency reference

- Select $[\mathrm{AA} 101]=01 \mathrm{Ai} 1$ terminal input from parameter setting screen.
* Select voltage input (0 to 10V) for Ai1 slide switch SW1 on control circuit board.

- Frequency reference
- Adjust the position of the knobs on the potentiometer to change the frequency reference value.
- Parameter

Parameter	Details	Setting   data
[AA101]	Set as frequency reference   for Ai1 input terminal.	01

- Regarding Frequency reference input from the Ai2 terminal.
- The Ai2 terminal is current input ( 4 to 20 mA ) in factory setting. It can switch to voltage input by setting the Ai2 slide switch to the voltage side (10V) on the control circuit terminal.
- When setting the voltage input to 0 to 10 V , please change the parameter [Cb-15] from the initial value of 20.0\% to 0.0\%.

To set the frequency reference with the Ai2 terminal input, select 02(Terminal[Ai2]) on the parameter [AA101].

## Run command source 3

### 3.8 Operate using 3WIRE terminal

Select [AA111] = 01: 3WIRE function from parameter setting screen. In this section, 3WIRE functions are assigned into the input terminals.

* Terminal 7[CA-07] = 016; terminal 8[CA-08] = 017; terminal 9[CA-09] = 018
(Note: When the input terminal 017[STP] function is assigned, it becomes NC contact input)

- Run/stop command
- When the input terminal 016[STA] is turned on while the input terminal 017[STP] is on, operation starts.
- If the input terminal 017[STP] is turned off from the operating status, the motor will decelerate to a stop. To restart, turn on the input terminal 017[STP] again and turn on the input terminal 016[STA] terminal.
- The rotation direction is selected with the input terminal $018[\mathrm{~F} / \mathrm{R}]$ terminal.

■ Parameter

Parameter	Details	Setting   data
[AA111]	Set the RUN command for   3WIRE function.	01
[CA-07]	The terminal 7 is [STA].	016
$[C A-08]$	The terminal 8 is [STP].	017
$[C A-09]$	The terminal 9 is [F/R].	018

- Example for adjusting I/O terminals 1


### 3.9 Adjust the analog input (Ai1/Ai2)

E.g.) Adjust operation (E.g. for Ai1)

- Set the ratio to input to limit the operating range of the frequency reference.
(When selecting the frequency reference through analog input terminal)

- Parameter

Parameter		Details
Ai1	Ai2	
[Cb-03]	[Cb-13]	Set the frequency source ratio to the start ratio of the analog input.
[Cb-04]	[Cb-14]	Set the frequency source ratio to the end ratio of the analog input.
[Cb-05]	[Cb-15]	Set the start ratio of the analog input 0 to $10 \mathrm{~V} / 0$ to 20 mA .
[Cb-06]	[Cb-16]	Set the end ratio of the analog input 0 to $10 \mathrm{~V} / 0$ to 20 mA .
[Cb-07]	[Cb-17]	Select whether 0\% to [Cb-05]/[Cb-15] is to be $0 \%$ or [Cb-03]/[Cb-13].

- Ai2 adjustment can be done in similar way to Ai1 by using Ai2 parameters in order to Ai1.
E.g.) Make a fine adjustment (E.g. for Ai1)

- Parameter

Parameter		Details
Ai1	Ai2	
[Cb-30]	[Cb-32]	Adjust the zero-point reference line for   voltage input 10V/current input 20mA   and the maximum frequency.
[Cb-31]	[Cb-33]	Adjust the slope of the reference line   for voltage input 10V/current input   20mA.

${ }^{*}$ ) Use the slide switch on control circuit terminal board to change for voltage/current input.

## ■ Example for adjusting I/O terminals 2

### 3.10 Adjust the analog output (Ao1/Ao2/FM)

E.g.) Adjust operation (E.g. for Ao1)

- Set a value equivalent to 0\% output first.

- Then, adjust a value equivalent to $100 \%$ output.

- Parameter

Parameter			Details
Ao1	Ao2	FM	[Cd-23]
[Cd-33]	-	Adjust the zero-point   reference line for voltage   output 10V/current output   20mA and data at 100\%.	
[Cd-24]	[Cd-34]	-	Adjust the slope for voltage   output 10V/current output   20mA and data at 100\%.
-	-	$[C d-13]$	Adjust the zero-point   reference line for 100\%   duty cycle output and data   at 100\%.
-	-	$[C d-14]$	Adjust the slope for 100\%   duty cycle output and data   at 100\%.

${ }^{*}$ ) Analog output terminals Ao1/Ao2 can be switched to voltage or current output with the slide Switch on the control circuit terminal. Factory setting is Ao1=voltage output and Ao2=current output. (Note: With Ver2.02 or later, the initial value of Ao 2 is 4 to 20 mA current output, $[\mathrm{Cd}-33]=20.0 \%$ and $[\mathrm{Cd}-34]=80.0 \%$.
If changing to 0 to 10 V voltage output or if it is Ver2.01 or older, please review the parameters [Cd-23] [Cd-24] [Cd-33] [Cd-34]. Also, for Ver2.01 and old , refer to the supplementary explanation of this guide.)

- Example for adjusting I/O terminals 3


### 3.11 Adjust the analog input (Ai3)

E.g.) Adjust operation (E.g. for Ai3)


- Parameter

Parameter	Details
Ai3	Cb-23]
$[\mathrm{Cb}-24]$	Set the frequency source ratio to the start   ratio of the analog input.
$[\mathrm{Cb}-25]$	Set the frequency source ratio to the end   ratio of the analog input.
$[\mathrm{Cb}-26]$	Set the start ratio of the analog input -10V   to 10V.
Set the end ratio of the analog input -10V   to 10V.	

E.g.) Make a fine adjustment

-Parameter

Parameter	Details	
Ai3	Adjust -10 V on the reference line for   $-10 \mathrm{~V} / 10 \mathrm{~V}$ and the frequency.	
$[\mathrm{Cb}-34]$	Adjust the slope of the reference line.	
$[\mathrm{Cb}-35]$		

Example for adjusting I/O terminals 4
3.12 Input terminal chatter prevention

- Set a response time for input terminal to prevent from a malfunction due to noise or/and chatter.

Operation of the input terminal 1 Operation of the internal functions


- Parameter

Input   terminal	Response   time	Input   terminal	Response   time	
1	$[C A-41]$	7	$[C A-47]$	
2	$[C A-42]$	8	$[C A-48]$	
3	$[C A-43]$	9	$[C A-49]$	
4	$[C A-44]$	A	$[C A-50]$	
5	$[C A-45]$	$B$	$[C A-51]$	
6	$[C A-46]$			

Example of adjusted I/O terminals 5

### 3.13 Output terminals stabilization

- Set the delay time to stabilize an output terminal from a sensitive reaction of internal functions.

- Parameter

Output   terminal	On-delay time	Off-delay time
11	$[C C-20]$	$[C C-21]$
12	$[C C-22]$	$[C C-23]$
13	$[C C-24]$	$[C C-25]$
14	$[C C-26]$	$[C C-27]$
15	$[C C-28]$	$[C C-29]$
$16 A-16 C$	$[C C-30]$	$[C C-31]$
AL1-ALO/   AL2-ALO	$[C C-32]$	$[C C-33]$

## Chapter 4 Settings

### 4.1 Keypad overview

### 4.1.1 How to use the keypad

$\diamond$ Image colour may differ from the real product.

4.1.2 Display mode (6)

Number	Name	Description
(1)	F1 key	Transition to home, cancel,   etc. Function of the key is   indicated at the bottom   left of the screen.
(2)	F2 key	Save data, etc. Function of   the key is indicated at the   bottom right of the screen.
(3)	RUN key	Motor motion starts when   this key is pressed.   (If this key is valid.)
(4)	STOP/RESET   keys	Decelerate to stop or reset   the tripping.
(5)	UP/DOWN/   LEFT/RIGHT   keys \& SEL key   (centre)	To move between the   screen/data use   UP/DOWN/   LEFT/RIGHT. To select the   data, press the SEL key.
(6	Monitor   screen	Display parameters and   data.
(7)	RUN LED	Turns ON while RUN   command is in execution.
(8)	POWER LED	Turns ON while the keypad   is powered-on.



Number	Description
(A)	Operation status.
(B)	Warning status.
(C)	Data/parameters.
(D)	Function assigned to F1 key.
(E)	Function of RUN key.
(F)	Frequency reference, Torque reference,   Inverter Name, Clock, etc.   Selected by F2 Option
(G)	Function assigned to F2 key.


Number	Name	Description
<a>	Pow	Type of power supply (Input).
<b>	SET	SET terminal for 1st/2nd motor   setting.
<c>	Prm	Parameter display mode.
<d>	No.	Screen number.
<e>	STO	Functional Safety. STO
<f>	Cntrl	Control mode.
<g>	EzSQ	EzSQ program.
<h>	Spcl	Special functions.

$\diamond$ For more detail, refer to "Chapter 5.2 Confirming the status" or P1 users' guide.

### 4.1.3 Monitor mode

$\triangleleft$ For screens not described below, refer to P1 User's $>$ Pressing F1 key will return to any monitor screen. Guide.

(Note: function 02 to 05 are added from Ver2.02)

### 4.1.3.1. Reference screen (parameter setting)

Change the parameter.


Press the SEL (O) key.


An area in the screen will be highlighted.


With UP/DOWN $(\Delta \nabla)$ keys select either parameter or monitor area then will be highlighted.


If SEL (O) key is pressed, the parameter code can be changed.

Using UP/DOWN/LEFT/RIGHT ( $\Delta \nabla \triangleleft \mathbb{D}$ ) keys the parameter code to be monitored can be changed, pressing again the SEL (O) key give access to the function parameter. Press 1 key to return back.


- In case of changing numeric type parameter value:


With UP/DOWN/LEFT/RIGHT $(\Delta \nabla \triangleleft \Delta)$ keys change the parameters value,
And then press the SEL ( $O$ ) key to save the changes.

- In case of changing selection type parameter value:

The lower area of the display shows the selectable item.


With UP/DOWN $(\Delta \nabla)$ keys you can move between the selectable items.
And then press the SEL ( 0 ) key to save the changes.


### 4.1.3.2 3 lines monitor and Large monitor

To change the monitor details.


Press the SEL (O) key while on the 3 lines screen, highlighting the first line as result.


Then with UP/DOWN $(\Delta \nabla)$ is possible to highlight the one desired of the three monitors.


Pressing the SEL (O) key, the code can be accessed.


Making use of UP/DOWN/LEFT/RIGHT ( $\Delta \nabla \triangleleft D$ ) keys, the code of the parameter to be monitored can be changed, and then with the SEL (O) key confirm the change. Press 1 key to return back.
The top of " 3 lines monitor" is same as the display setting for "Large monitor".

### 4.1.3.3 Trip history screen

On tripping event.


With UP/DOWN $(\Delta \nabla)$ keys, the trip status can be confirmed. Also, the background will become red.

In case checking trip history:

STOP	NRDY		H06
Trip histo   Total cou	18 times		
1. E001	16/12/25	22:15	
2. E007	16/12/25	20:33	
3. E009	16/12/02	17:24	
4. E012	16/10/10	08:50	
5. E001	16/09/21	14:43	
----	oFW	46.49	Detail

In the Trip history screen press the SEL (O) key, and with UP/DOWN $(\Delta \nabla)$ keys highlight a history, then press SEL
(O) key to access the details regarding that trip status.

> *) For more details about the detailed history, refer to
> "Chapter 5 FAQ/Troubleshooting".
> *) Put a battery for using clock function.

Call 1(800)985-6929 for Sales Chapter 4
4.1.4 Doing a test run...

- This explains the method to how to do a test run using the keypad.



## (E) $\uparrow$ (F) $\uparrow$

### 4.1.4.1 Confirm the RUN command.

- In the (E) of the upper illustration, when is displayed FW or RV, the RUN key of the keypad is enabled. $\Rightarrow G o$ to [4.1.4.2]
※In the cases that is not displayed, and want to operate from the keypad, or want to change the RUN command reference to FW terminal, is necessary to change the RUN command selection.
$\Rightarrow G o$ to [4.1.4.4 Run Command reference change]


### 4.1.4.2 Confirm the frequency reference status.

- In the upper illustration, in the (F), when values other than 0.00 Hz are displayed, the frequency reference is already set. $\Rightarrow$ Go to [4.1.4.3]
※In the case that 0.00 Hz is displayed, is necessary to change the value of the frequency reference. In the case that you want to change to an analog input and such, the frequency reference selection must be changed.

$$
\Rightarrow \text { Go to [4.1.4.5] }
$$

※ When the unit of the display of $(F)$ is other than " Hz ", the display data of $(F)$ is not the frequency reference.
Press F2 key $\Rightarrow$ Select [02 Lower center data] and press SEL(o) key $\Rightarrow$ Selecting [00 Set Frequency] and press F2 key (Save), the display data in (F) becomes the frequency reference.

### 4.1.4.3 Start the output by pressing the RUN key and the motor will accelerate. <br> ※When the motor does not rotate, refer to the "Chapter 5 FAQ/Troubleshooting".

### 4.1.4.4 RUN command reference change

(1) Press the RIGHT( $\triangle$ ) key, after moving to the parameter setting screen and by pressing the SEL(O) key, the parameter section of the parameter setting screen will blink.

STOP		
Output frequency		
	0.00 Hz	
PA-01		
'Set Speed-M (Keypad)		
		29.51 Hz
Back	29.51Hz	, ----

(2) Change the code with UP/DOWN/LEFT/RIGHT ( $\Delta \nabla \nabla \nabla$ ) keys to [AA111].

(3) Press the SEL(O) key and then with UP/DOWN $(\Delta \nabla)$ keys select the RUN operation to be executed between all the choices. In this case [02:RUNkey(Keypad)] is the one selected.

(4) To save the changes press the SEL (O) key and then in the position (E) FW or RV should be displayed. Press the F1 key, and will go to Home screen.
$\Rightarrow$ Go to [4.1.4.2]

### 4.1.4.5 Frequency reference change

(1) Press the RIGHT ( $\triangleright$ ) key and after moving to the parameter setting screen, press the SEL (O) key, the parameter section of the parameter setting screen will blink.

(2) With UP/DOWN/LEFT/RIGHT $(\Delta \nabla \triangleleft \triangleright)$ keys change the code to [FA-01], then [Main speed reference (keypad)] shall be displayed, the frequency reference can be changed.
$\Rightarrow$ Go to (3)
If the displayed screen is different, change the frequency reference source. $\Rightarrow$ Go to (5)
(3) Press the SEL(O) key, with UP/DOWN/LEFT/RIGHT ( $\Delta \nabla \triangleleft$ ) keys change the frequency value.


## (F) $\uparrow$

(4) To save the changes press the F2 key (save), and after that in the position (F) should be displayed the frequency reference. Press the F1 key, and will go to Home screen. $\Rightarrow$ Go to [4.1.4.3]
※The parameter [FA-**] are automatically saved into non-volatile memory without pressing the F2 key (save).
(5) With UP/DOWN/LEFT/RIGHT $(\Delta \nabla>$ ) keys change the parameter code to [AA101].

(6) Press the $\operatorname{SEL}(0)$ key and with UP/DOWN $(\Delta \nabla)$ keys, select the frequency reference source to be used. [07:Keypad] is selected in this case.

(7) When the F2 key (save) is pressed to save changes, the current frequency reference is displayed at the (F) position. Press the F1 key, and will go to Home screen.

$$
\Rightarrow G o \text { to (1) }
$$

### 4.1.5 How to copy data.

Data can be stored in the keypad and then copied to other inverter unit. It is strongly recommended to make backup of the data just in case.

Refer to P1 user's guide for a more detailed explanation.
(1) Select Read/Write function menu

(2) "Read" function is used for storing the data from the inverter to the keypad.
(2)' "Write" function is used for copying the data stored in the keypad to the inverter


For more information, refer to the P1 user's guide.

### 4.1.6 System configuration of the keypad

With 07 System setting, you can set and adjust keypad related parameters.


- Available actions in the system setting

No	Name	Memo
01	Language selection	Changes the language   setting.
02	Dimming	Controls the brightness of   operator keypad screen.
03	Automatic light off   time*1)	Controls the time to   automatically light off the   screen.
04	Dimming at light off   $\left.{ }^{*} 1\right)$	Controls the brightness when   the screen is automatically lit   off.
05	Automatic home   transition time	Sets the time to   automatically return to the   home screen.
06	Initial home screen   selection	Sets the screen that is   displayed upon power-on   and the home screen at   automatic home transition.   Even the input termina

Even if the input terminal

$$
\text { function } 102[\mathrm{DISP}] \text { is turned }
$$

on, it is fixed to the home

		screen set here.
07	Read lock	Limits the reading of data.
08	Blinking during trip	Sets whether blinking is


08	Blinking during trip	Sets whether blinking is   performed or not during trip.
09	Date and time*2)	Configures settings of time,   display for


10	Battery level warning	display format, and battery   level warning.
Displays a warning message		


		when the battery runs out.
11	Color setting	Sets the background color.
12	Basic inverter   information	Checks information of the


13	Selection of   connected model	Sets SJ-P1.
14	Operator keypad   version	Displays the version of the   operator keypad.
15	Initialization of   operator keypad	Initializes the operator   keypad.
16	Self-check mode	Operates self-check mode.
17	Remote mode   switching	If this setting is enabled,   when the F1 key on the   home screen is pressed for 1   second or more, you can   switch the frequency   reference and RUN   command to commands   issued from the operator   keypad.
18	Reserve	Do not change the setting   from OFF.

*1) The auto backlight-off function will deactivate during in trip status until trip reset. For more information, refer to the P1 user's guide.
*2) Battery is required to use date and time function.
Recommend: Maxell, Ltd. CR2032, 3V
The battery is to be replacing every two years while the inverter is power off.
4.1.7 How to check parameters in scroll mode In scroll mode, parameter can be change while monitoring. To set parameters by Reference screen, refer to "4.1.3.1 Reference screen (parameter setting)"

### 4.1.7.1 try scroll mode

(1)Press the F1 key [Menu] on [home] screen

(2) With UP/DOWN $(\Delta \nabla)$ key select scroll mode to display scroll menu, then, press SEL (0) key to display scroll menu screen.

(3)Select the monitor group with UP/DOWN $(\Delta \nabla)$ key and press SEL (0) key, then return to parameter list. For example, selecting "A:Standard Func." then press SEL (0) key.

(4) Select a parameter to change with UP/DOWN ( $\Delta \bar{\nabla}$ ) key and press SEL (0) key, then return to setting screen.
(5)-1 When the parameter is to be set as alternative, Press UP/DOWN $(\Delta \nabla)$ key to select data and press F2 (Save) key to store then return to parameter list shoown above.

(5)- 2 When the parameter is to be set as a numerical value, Press UP/DOWN/LEFT/RIGHT ( $\Delta \nabla \triangleleft \triangleright$ ) key to change data and press F2 (Save) key to store, then return to parameter list shoown above.

(Tips)

- Press F1 (Return) key to return to parameter list without storing the parameter change.
- Parameter selected for reference screen is show in upper line on (5)-2.
- When the scroll mode is set to the initial display screen at power on with the setting of " 07 System setting"-> "06 Initial Display", the dA-** screens such as dA-01, dA02 , etc. are displayed.


### 4.1.7.2 Group Jump Function


(2) When to jump to the detailed subgroup ( $A A, A b$ etc) in parameter group, press F2 key.
A group for example : ... $\Rightarrow A A \Rightarrow A b \Rightarrow A C \Rightarrow \ldots \Rightarrow A J \Rightarrow A A \Rightarrow$...


Call 1(800)985-6929 for Sales
Chapter 4
[dA-01] to [dA-41]
4.2 Monitor naming (Nomenclature)

4.3 Description of monitor functions

## ※For more detail, refer to P1 user's guide.

$\square$ Monitor mode (d code)

Code/Name	Range (unit)
dA-01 Output frequency monitor	0.00 to $590.00(\mathrm{~Hz})$   <Actual frequency output>
dA-02 Output current monitor	$\begin{aligned} & \hline 0.00 \text { to } 655.35(\mathrm{~A}) \\ & (0.0 \sim 6553.5(\mathrm{~A})(\mathrm{P} 1-1600 \mathrm{H} \sim)) \end{aligned}$
dA-03 Rotation direction monitor	F(forward)/r(reverse)/   d(OHz output)/o(stop)
dA-04 Frequency reference monitor (after calculation) *2)	$-590.00 \text { to } 590.00(\mathrm{~Hz})$   <as target value>
dA-06 Output frequency scale conversion monitor	0.00 to $59000.00(\mathrm{~Hz})$
dA-08   Detect speed monitor	$\begin{aligned} & -590.00 \text { to } 590.00(\mathrm{~Hz}) \\ & \text { <Encoder feedback required> } \end{aligned}$
dA-12 Output frequency monitor (signed)	-590.00 to $590.00(\mathrm{~Hz})$
dA-14 Frequency upper limit monitor	0.00 to $590.00(\mathrm{~Hz})$
dA-15 Torque reference monitor (after calculation) *2)	$-1000.0 \text { to } 1000.0(\%)$   <Torque control mode required>
dA-16 Torque limit monitor	0.0 to 500.0(\%)
dA-17 Output torque monitor *1)	-1000.0 to 1000.0(\%)
dA-18 Output voltage monitor	0.0 to $800.0(\mathrm{~V})$
dA-20 Current position monitor	When [AA121] $\neq 10$ or [AA123] $\neq 03$ -536870912 to +536870911 (pls)   Parameter setting other than above $-2147483648 \text { to }+2147483647 \text { (pls) }$
dA-26 Pulse train position deviation monitor	-2147483647 to +2147483647 (pls)
dA-28 Pulse count monitor	0 to 2147483647(pls)
dA-30 input power monitor	$\begin{aligned} & 0.00 \sim 655.35(\mathrm{~kW}) \\ & (0.0 \sim 6553.5(\mathrm{~kW})(\mathrm{P} 1-1600 \mathrm{H} \sim)) \end{aligned}$
dA-32 Accumulated input power monitor	0.0 to 1000000.0(kWh)
dA-34 Output power monitor	$\begin{aligned} & 0.00 \sim 655.35(\mathrm{~kW}) \\ & (0.0 \sim 6553.5(\mathrm{~kW})(\mathrm{P} 1-1600 \mathrm{H} \sim)) \end{aligned}$
dA-36 Accumulated output power monitor	0.0 to 1000000.0 (kWh)
dA-38 Motor temperature monitor	-20.0 to 200.0(degree Celsius)
dA-40 DC bus voltage monitor	0.0 to $1000.0(\mathrm{~V})$
dA-41 BRD load rate monitor	0.00 to 100.00(\%)

## Monitor data list

For parameter configuration

[db-01] to [db-64]	
Code/Name	Range (unit)
db-01 Program download monitor	00(Program is not installed)/ 01(Program is installed)
db-02 Program No. monitor	0000 to 9999
db-03 Program counter (Task-1)	1 to 1024
db-04 Program counter (Task-2)	
db-05 Program counter (Task-3)	
db-06 Program counter (Task-4)	
db-07 Program counter (Task-5)	
db-08 User monitor-0	$\begin{array}{\|l\|} \hline-2147483647 \\ \text { to }+2147483647 \end{array}$
db-10 User monitor-1	
db-12 User monitor-2	
db-14 User monitor-3	
db-16 User monitor-4	
db-18 Analog output monitor YAO	0.00 to 100.00\%
$\mathrm{db}-19$ Analog output monitor YA1	
db-20 Analog output monitor YA2	
db-21 Analog output monitor YA3	
db-22 Analog output monitor YA4	
db-23 Analog output monitor YA5	


Code/Name	Range (unit)	
$\mathbf{d b - 3 0}$ PID1 feedback value 1 monitor	-100.00 to 100.00(\%)	
(it also depends on [AH-04],		
[AH-05], [AH-06])		


	C-01] to [dE-50]
Code/Name	Range (unit)
dC-01   Inverter load type status	$\begin{aligned} & \text { 00(Very Low duty)/ } \\ & \text { 01(Low duty)/ } \\ & \text { 02(Normal duty) } \end{aligned}$
dC-02 Rated current monitor	0.0 to 6553.5(A)
dC-07 Main speed input source monitor	01 to $34 * 1)$
dC-08 Sub speed input source monitor	00 to 06,08,25 to 33 *1)
dC-10 RUN command input source monitor	00([FW]/[RV] terminal)/ 01(3-wire)/   02(Keypad's RUN key)   03(RS485)/04(Option1)/   05(Option2)/06(Option3)
dC-15 Cooling fin temperature monitor	-20.0 to $200.0\left({ }^{\circ} \mathrm{C}\right)$
dC-16 Life assessment monitor	LL to HH   [L:Normal/H:Fatigued]   [Left](FAN lifespan)   [Right](board capacitor life span)
dC-20 Accumulated number of starts monitor	
dC-21 Accumulated number of power-on times monitor	
dC-22 Accumulated RUN time monitor	
dC-24 Accumulated power-on time monitor	1 to 1000000(hr)
dC-26 Accumulated cooling-fan run time monitor	
dC-37 Icon 2 LIM monitor	00(Other than below )/   01(OC suppress)/   02(OL restriction)/   03(OV suppress)/   04(TRQ Limit)/   05(Freq Limit)/06(Min. Freq)
dC-38 Icon 2 ALT monitor	00(Other than below)   01(OL notice )   02(Motor thermal notice)   03(Controller thermal notice)   04(Motor overheating notice)
dC-39 Icon 2 RETRY detail monitor	00(Other than below)   01(Waiting for retry)   02(Waiting for restart)
dC-40 Icon 2 NRDY detail monitor	00(Other than below )   (Output terminal 007[RRDY]= ON, When the state is other than the following )   01(Trip occurrence)   02(Power supply error)   03(Resetting)   04(STO) / 05(Standby)   06(Data Warning, etc)   07(EzSQ Sequence error)   08(Free run) / 09(Forced stop)
dC-45 IM/SM monitor	00 (IM selected)/   01 (SM selected)
dC-50 Firmware ver. Monitor	00.00 to 99.99
dC-53 Firmware Gr. Monitor	00(Standard)
dE-50 Warning monitor	$\begin{aligned} & 0 \text { to } 65535 \\ & \text { Refer to P1 users guide } \\ & \hline \end{aligned}$

*1)00(disabled)/01(Ai1)/02(Ai2)/03 (Ai3)/04(Ai4)/05(Ai5)/06(Ai5) 07(Multi-speed 0)/08(auxiliary speed)/09 to 23(Multi-speed1 to 15)/ 24(JG[AG-20])/25(RS485)/26(option-1)/27(option-2)/28(option-3)/ 29(Pulse train input(internal))/30(Pulse train input(option))/31(EzSQ) 32(PID)/33(MOP-VR)/34(AHD retention speed)/
[FA-01] to [FA-40]

- Variable mode monitor (F code)
- If a parameter that is being monitored by one of the [FA] parameters can be modified, it can directly be modified through that [FA]
parameter.

Code/Name	Range (unit)
FA-01   Main speed reference setting or monitor	0.00 to $590.00(\mathrm{~Hz})$
FA-02   Sub-speed reference setting or monitor	$\begin{aligned} & -590.00 \text { to } 590.000(\mathrm{~Hz}) \\ & \text { (at monitor) } \\ & 0.00 \text { to } 590.00(\mathrm{~Hz}) \\ & \text { (at setting) } \\ & \hline \end{aligned}$
FA-10   Acceleration time setting or monitor FA-12   Deceleration time setting or monitor	0.00 to 3600.00(s)
FA-15   Torque reference setting or monitor	-500.0 to 500.0(\%)
FA-16   Torque bias setting or monitor	-500.0 to 500.0(\%)
FA-20   Position reference setting or monitor	When $\begin{aligned} & {[\text { AA121] } \neq 10 \text { or [AA123] } \neq 03} \\ & -268435455 \text { to } \\ & +268435455 \text { (pls) } \end{aligned}$   Other than above. $\begin{aligned} & -1073741823 \text { to } \\ & +1073741823 \text { (pls) } \\ & \hline \end{aligned}$
FA-30   PID1 set-point 1 setting or monitor FA-32   PID1 set-point 2 setting or monitor	-100.00 to 100.00(\%)   ( Adjustable with [AH-04][AH-05][AH-06] )
FA-34   PID1 set-point 3 setting or monitor	
FA-36   PID2 set-point setting or monitor	-100.00 to 100.00(\%)   ( Adjustable with   [AJ-04][AJ-05][AJ-06] )
FA-38   PID3 set-point setting or monitor	-100.00 to 100.00(\%)   ( Adjustable with   [AJ-24][AJ-25][AJ-26] )
FA-40   PID4 set-point setting or monitor	-100.00 to 100.00(\%) ( Adjustable with [AJ-44][AJ-45][AJ-46] )

4.4 Parameter naming (Nomenclature)


Parameter group

Internal number in the group

- : Common for 1st and 2nd motor
$1: 1$ st motor enabled if function [SET] is OFF
$2: 2 n d$ motor enabled if function [SET] is ON
※By default, $1^{\text {st }}$ motor parameter is enabled in the case that 08:[SET] is not assigned in the Intelligent Input terminals [CA-01] to [CA-11].

Input terminal 024[SET] enable code example.

[SET]OFF	[SET]ON
$\left[{ }^{* *}-* *\right]$ type	$\left[{ }^{* *}-* *\right]$ type
$\left[* * 1^{* *}\right]$ type	$\left[{ }^{* *} 2^{* *}\right]$ type

(Example)

$[\mathrm{SET}] \mathrm{OFF}$	$[\mathrm{SET}] \mathrm{ON}$
$[\mathrm{AH}-01]$	$[\mathrm{AH}-01]$
$[\mathrm{Ub}-01]$	$[\mathrm{Ub}-01]$
$\cdot \cdot \cdot$	$\bullet \cdot \cdot$
$[\mathrm{Hb} 102]$	$[\mathrm{Hb} 202]$
$[\mathrm{Ab} 110]$	$[\mathrm{Ab} 210]$
$[\mathrm{bA} 122]$	$[\mathrm{bA} 222]$
$\cdot \cdot \cdot$	$\bullet \cdot \cdot$

※When using 2nd motor parameter setting by [SET] function of terminal, description as 1st motor setting in the following part is to be replaced with that of 2nd motor setting.

### 4.5 Parameter arrangement

Next is the parameter explanation, such as the parameter group and the internal group number line-up.
T classification numbers "-" and " 1 " are lined without distinction, except " 2 " which is lined-up after "-" and " 1 ". Example) Regarding the order
$[A A 1 \underline{01}] \Rightarrow[A A 1 \underline{02}] \Rightarrow[A A 1 \underline{04}] \Rightarrow[A A 1 \underline{105}] \Rightarrow$...
$\Rightarrow[$ AA123 $] \Rightarrow[$ AA201 $] \Rightarrow$... $\Rightarrow[$ AA223 $] \Rightarrow$
$[A b-\underline{01}] \Rightarrow[A b-\underline{03}] \Rightarrow[A b 1 \underline{10}] \Rightarrow[A b-\underline{11}] \Rightarrow \ldots$
(Parameters order depends on the last 2 digit.)
$\Rightarrow[\mathrm{Ab}-25] \Rightarrow[\mathrm{Ab} 210] \Rightarrow$
$[A C-01] \Rightarrow$...
(At first the parameters which middle character is "-" or " 1 " are shown, next the parameters which middle character is " 2 " are shown, then the group will change.)
※Depending on display restriction function, Parameters may not be displayed in order.
Refer to [UA-10][UA-21][UA-22].
[AA101] to [AA106]

### 4.6 Parameter explanation

- To set parameters, read and understand the P1 user's guide first.
- For the motor protection, the following parameters are necessary to be set.
-[Hb102] to [Hb108](If [IM]) -[Hd102] to [Hd108](If [SM/PMM]) -[bC110](Electronic thermal level setting, 1stmotor)
※The initial value may vary according to a Model name.
Model name: P1-(numeral)-(voltage)(keypad)(area)(filter)
(Example) Japan 200V Class P1-00044-LFF Europe 400 V Class P1-00054-HFEF Voltage rating: The voltage class is $\mathrm{L}(200 \mathrm{~V}) / \mathrm{H}(400 \mathrm{~V})$ localize: None(JPN)/E(EU,ASIA)/U(USA)/C(CHN)
※When option is connected, parameters to display or setting range may be added. For more details, refer to respective option User's Guide.
Parameter mode (A code)
Frequency reference selection

Code/Name	Range (unit)	Initial value
AA101 Main speed   input source selection,   1st-motor	01 to 16 *1)	$07(J P N) /$   $01($ (EU)(USA)   (ASIA)(CHN)
AA102 Sub speed   input source selection,   sst-motor	00 to 16 *1)	00
AA104   Sub speed setting, 1st-   motor	0.00 to 590.00(Hz)	0.00
AA105   Speed reference   calculation symbol   selection, 1st-motor	00(Disable)/   01(Addition)/   02(Subtraction)/   03(Multiplication)	00
*1)		

*1)00(Disable)/01(Terminal[Ai1])/02(Terminal[Ai2])/03(Terminal[Ai3])/ 04(Terminal[Ai4])/05(Terminal[Ai5])/06(Terminal[Ai6])/07(Parameter Setting)/08(RS485)/09(Option-1)/10(Option-2)/11(Option-3)/ 12(Pulse train input(internal))/13(Pulse train input(option))/ 14(Program function)/15(PID)/16(MOP VR)

- To change the frequency input reference, use [AA111]. Example: to set by [FA-01] -> [AA101]=07

To set by Analog(voltage) to set -> [AA101]=01(Ai1)

- To change between main and sub speed is possible with the math operator.
- If [AA105]=00, the Intelligent input terminal $015[\mathrm{SCHG}]$ can change the frequency reference input source between the main(OFF) and sub(ON).
- Through the [AA105] selection, the operator for the main and sub speed frequency calculation is set.


## Temporary frequency addition

Code/Name	Range (unit)	Initial value
AA106 Add frequency   setting, 1st-motor	-590.00 to $+590.00(\mathrm{~Hz})$	0.00

- When the input terminal 014[ADD] is ON the frequency set in [AA106] will be temporarily added to the frequency reference.


## [AA111] to [AA115][bb-40]

## RUN command selection

Code/Name	Range (unit)	Initial value
	O0([FW]/[RV] terminal)	$02(J P N) /$
AA111	00(3-wire)	
RUN command	02(Keypad's RUN-key)	00(EU)
input source	03(RS485)	(USA)
selection, 1st-	$04($ Option-1)	(ASIA)
motor	$05(O p t i o n-2)$	(CHN)

- Select in which way will be operated.

In case it does not work, please review it.

## Keypad keys setting

Code/Name	Range (unit)	Initial value
AA-12 RUN-key   command rotation   direction	00(Forward)/   01(Reverse)	00
AA-13   STOP-key enable	00(Disable)/01(Enable)/   02(Enable at only trip reset)	01

- [AA-12] specifies in which direction (forward/reverse) will be the rotation after pressing the RUN key in the operation keypad.
- [AA-13] changes the behavior of the STOP key of keypad. When 01 (enable) (initial value) is set, the STOP key performs stop operation regardless of the run command selection. When stopping only with the command selected in the run command selection, change it to 00 (disabled). If the run command selectin [AA111] is set to 02(Keypad's RUN key), the STOP key on the Keypad is valid regardless of the [AA-13] setting.


## RUN command direction restriction

Code/Name	Range (unit)	Initial value
AA114 RUN direction	00(No restriction)/   01(Only forward)/   restriction,1st-motor	00

- In the case of an incorrect RUN command, [AA114] setting prevents the output from unintended rotation.


## Restart operation after decel/free-run STOP

Code/Name	Range (unit)	Initial value
AA115 sTOP mode   selection, 1st-motor	00(Deceleration stop)/   01(Free-run stop)	00
bb-40   Restart mode after FRS   release	00(Restart at 0Hz)/   01(Restart with matching   frequency)/   02(Restart with active   frequency matching)/   03(Detect speed)(*1)	00

(*1) Requires encoder feedback to the P1-FB option or the input terminal function $103[P L A] / 104[P L B]$ assigned $[A] /[B]$ terminals.

- In [AA115] setting, deceleration stop or free-run stop can be selected when a stop command is executed.
- If input terminal 032[FRS] is active (ON), free-run stop is possible.
- With [bb-40], a restart with the release of the [FRS], or a restart operation that will be executed after the free-run-stop operation will be selected.
- If it selected free-run-stop (the torque will be lost), it can be configured to stop by inertia in case of the [E007] overvoltage error occurs during deceleration.

Control mode selection

Code/Name	Range (unit)	Initial value
AA121   Control   mode   selection,   1st-motor	00 ([V/f] Fixed torque characteristics (IM))/   01 ([V/f] Reducing torque characteristics (IM))/   02 ([V/f] Free V/f (IM))/   03 ([V/f] Auto torque boost (IM))/   04 ([V/f with encoder]   Fixed torque characteristics (IM)/   05 ([V/f with encoder]   Reduced torque characteristics (IM)/   06 ([V/f with encoder] Free V/f (IM)/   07 ([V/f with encoder] Auto torque boost (IM)/   08 (Sensorless vector control (SLV) (IM))/   09 ( 0 Hz -range sensorless vector control (OHz-SLV) (IM)) /   10 (Vector control with encoder (CLV)(IM)) /   11(Synchronous start type   sensorless vector control(SM/PMM))/   12 (IVMS start type sensorless vector control (SM/PMM))	00

- Generally for a light duty control (such as fans or pumps), the [V/f] control with fixed torque characteristics or the [V/f] control with reducing torque characteristics similar to the operation characteristics of fans and pumps is selected.
- For heavy load (Cranes, etc...), sensorless vector control(SLV) is the typically used. If heavy torque is required at startup, closed loop vector control(CLV) or OHz-range sensorless vector control $(\mathrm{OHz}-\mathrm{SLV})$ will be used.
- For a magnet motor, select the sensorless vector control (SM/PMM).
※ With the Load Type(Ub-03) is in standard duty (ND) all the setting items are available. But the Load type is in Low duty (LD), 09 and 10 is not available. And at the Load type in very low duty (VLD), 09, 10 and 12 is not available.


## Vector control with encoder mode

Code/Name	Range (unit)	nitial value
AA123	00(Speed/Torque control mode)/	
Vector control	01(Pulse train position control)/	00
mode selection,	02(Position control)/	00
1st-motor	03(High-resolution position control)	

- Torque control is effective only when the AA121 setting is 08 to 12 and the AA123 settting is 00.
- Pulse train position control is effective only when the AA121 setting is 10 and the AA123 setting is 01, And input trminal 073 [STAT] is assignd and must be ON.
- Absolute position control is effective only when the AA121 setting is 10 and the AA123 setting is 02 or 03 .
- For more information, refer to the P1 user's guide.

2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range   (unit)	Initial   value
AA201 Main speed input source selection, nd-   motor	Same as AA101	
AA202 Sub speed input source selection, 2nd-   motor	Same as AA102	
AA204 Sub speed setting, 2nd-motor	Same as AA104	
AA205 Speed reference calculation symbol   selection, 2nd-motor	Same as AA105	
AA206 Add frequency setting, 2nd-motor	Same as AA106	
AA211 RUN command input source selection, 2nd-   motor	Same as AA111	
AA214 RUN-direction restriction selection, 2nd-   motor	Same as AA114	
AA215 STOP mode selection, 2nd-motor	Same as AA115	
AA221 Control mode selection 2nd-motor	Same as AA121	
AA223 Vector control mode selection, 2nd-motor	Same as AA123	

[Ab-01] to [Ab-25]
Frequency scale conversion monitor [dA-06]

Code/Name	Range (unit)	Initial value
Ab-01 Frequency   conversion gain	0.01 to 100.00	1.00

- The visualized "Output frequency scale conversion monitor[dA-06]" is equal to the "Output frequency monitor[dA-01]" multiplied by the "Frequency conversion gain[Ab-01]".


## Multi-speed command

Code/Name	Range (unit)	Initial value
Ab-03 Multi-speed operation selection	00(Binary(16 speeds))/   01(Bit(8 speeds))	00
Ab110 Multi-speed 0 setting,   1st-motor	0.00 to $\left.590.00(\mathrm{~Hz}){ }^{*} 1\right)$	0.00
Ab-11 Multi-speed 1 setting	0.00 to $590.00(\mathrm{~Hz}){ }^{*} 1$ )	0.00
Ab-12 Multi-speed 2 setting	0.00 to $590.00(\mathrm{~Hz}){ }^{*} 1$ )	0.00
Ab-13 Multi-speed 3 setting	0.00 to $590.00(\mathrm{~Hz}) * 1)$	0.00
Ab-14 Multi-speed 4 setting	0.00 to $590.00(\mathrm{~Hz}) * 1)$	0.00
Ab-15 Multi-speed 5 setting	0.00 to $590.00(\mathrm{~Hz}){ }^{*} 1$ )	0.00
Ab-16 Multi-speed 6 setting	0.00 to $590.00(\mathrm{~Hz}){ }^{* 1}$ )	0.00
Ab-17 Multi-speed 7 setting	0.00 to $590.00(\mathrm{~Hz}){ }^{* 1}$ )	0.00
Ab-18 Multi-speed 8 setting	0.00 to $\left.590.00(\mathrm{~Hz}){ }^{*} 1\right)$	0.00
Ab-19 Multi-speed 9 setting	0.00 to $\left.590.00(\mathrm{~Hz}){ }^{*} 1\right)$	0.00
$\mathbf{A b - 2 0}$ Multi-speed 10 setting	0.00 to $590.00(\mathrm{~Hz}){ }^{*} 1$ )	0.00
Ab-21 Multi-speed 11 setting	0.00 to $590.00(\mathrm{~Hz}) * 1)$	0.00
Ab-22 Multi-speed 12 setting	0.00 to $\left.590.00(\mathrm{~Hz}){ }^{*} 1\right)$	0.00
Ab-23 Multi-speed 13 setting	0.00 to $590.00(\mathrm{~Hz}) * 1)$	0.00
Ab-24 Multi-speed 14 setting	0.00 to $590.00(\mathrm{~Hz}){ }^{*} 1$ )	0.00
Ab-25 Multi-speed 15 setting	0.00 to $590.00(\mathrm{~Hz}) * 1$ )	0.00

*1) The actual setting range is limited to the maximum frequency setting ([Hb105/205] [Hd105/205]).

- For the 16 speeds selection, set [Ab-03]=00 for assigning the intelligent terminals 003[CF1] to 006[CF4] makes available the use of the speeds 0 to 15 .

Multi-speed	CF4	CF3	CF2	CF1
Speed 0	OFF	OFF	OFF	OFF
Speed 1	OFF	OFF	OFF	
Speed 2	OFF	OFF		OFF
Speed 3	OFF	OFF		
Speed 4	OFF		OFF	OFF
Speed 5	OFF		OFF	
Speed 6	OFF			OFF
Speed 7	OFF			
Speed 8		OFF	OFF	OFF
Speed 9		OFF	OFF	
Speed 10		OFF		OFF
Speed 11		OFF		OFF
Speed 12			OFF	OFF
Speed 13				OFF
Speed 14				
Speed 15				

- For the 8 speeds selection, set [Ab-03]=01 assigning the intelligent terminals 007[SF1] to 013[SF7] makes available the use of the speeds 0 to 7.

Multi-speed	SF7	SF6	SF5	SF4	SF3	SF2	SF1
Speed 0	OFF						
Speed 1	-	-	-	-	-	-	
Speed 2	-	-	-	-	-		OFF
Speed 3	-	-	-	-		OFF	OFF
Speed 4	-	-	-		OFF	OFF	OFF
Speed 5	-	-		OFF	OFF	OFF	OFF
Speed 6	-		OFF	OFF	OFF	OFF	OFF
Speed 7		OFF	OFF	OFF	OFF	OFF	OFF


$\left.$| 2nd motor When Intelligent Input terminal 024[SET] is enabled. |
| :--- |
| Code/Name |
| $\begin{array}{l}\text { Ab210 Multi-speed 0 setting, 2nd- } \\ \text { motor }\end{array}$ |
| Range (unit) | \(\begin{gathered}Initial <br>

value\end{gathered} \right\rvert\,\) Same as Ab110 $\quad$.

## Input method for Accel/Decel time

Code/Name	Range (unit)	Initial   value
AC-01	00(Parameter setting)/   01(Option-1)/	
Acceleration/Deceleration   time input source selection	02(Option-2)/   03(Option-3)/   04(Function EzSQ)	00

- [AC-01] changes the reference source for the Accel/Decel time command.


## Individual Accel/Decel time for Multispeed

Code/Name	Range (unit)	Initial   value
AC-02   Acceleration/   Deceleration selection	00(Common setting)/   01(Multi stage accel/decel)	00

- When [AC-02]=00, the Accel/Decel time settings [AC120][AC122] or [AC124][AC126] will be in effect.
- 2-stage Accel/Decel time change functions from [AC115] to [AC117] can be set.
- When [AC-02]=01, the Accel/Decel time [AC-30] to [AC88] for each multispeed control (from speed 1 to 15) are enabled.
- Even if [AC-02]=01, while in Multspeed-0 command, Accel/Decel time setting [AC120] [AC122] or Accel/Decel time setting [AC124] [AC126] are enabled.
- [CA-64]/[CA-66] takes precedence during the input terminal 020[FUP]/021[FDN] function. And [AH-78] takes precedence during the PID soft start function.
[AC-03] to [AC117]
Acceleration/deceleration curve selection

Code/Name	Range (unit)	Initial value
AC-03 Acceleration curve selection	00(Linear)/   01(S-curve)/   02(U-curve)/   03(Reverse U-curve)/   04(Elevator S-curve)	00
AC-04 Deceleration curve selection		00
AC-05 Acceleration curve constant setting	1 to 10	2
AC-06 Deceleration curve constant setting		2
AC-08 EL-S-curve ratio @start of acceleration	0 to 100(\%) *1)	25
AC-09 EL-S-curve ratio @end of acceleration		25
AC-10 EL-S-curve ratio @start of deceleration		25
AC-11 EL-S-curve ratio @end of deceleration		25

*1) The setting range is limited so that $\mathrm{AC}-08+\mathrm{AC}-09 \leqq 100$.(\%)
For example, when $\mathrm{AC}-09=25 \%$, the setting range of $\mathrm{AC}-08$ is 0 to $75 \%$ $\mathrm{AC}-10$ and $\mathrm{AC}-11$ are the same as above.

- When [AC-03]/[AC-04] = 00 (Linear), the Accel/Decel time operation becomes linear toward the target value.
- When $[$ AC-03]/[AC-04] $=01$ (S-curve), the start and end of the Accel/Decel time operation is made loose and shockless operation is performed.
- When [AC-03]/[AC-04] = 02 (U-curve), at the start of the Accel/Decel time operation is made loose.
- When [AC-03]/[AC-04]=03(Reverse -U-curve), at the end of the Accel/Decel time operation is made loose.
- For S-curve, U-curve and Reverse U-curve, the curve degree of Accel/Decel time operation can be set with [AC-05]/[AC-06].
- When [AC-03]/C-04] = 04 (EL-S-curve), at the start and end of the Accel/Decel time operation is made loose.
- For EL-S-curve shockless operation, the curve degree of Accel/Decel time operation can be adjusted with [AC08] to [AC-11].


## 2-stage Accel/Decel time change

Code/Name	Range (unit)	Initial   value
AC115 Accel/Decel   change trigger, 1st-motor	00(Switching by [2CH]   terminal)/   01(Switching by setting)/   02(Switching only when   rotation is reversed)	00
AC116 Accel1 to Accel2   frequency transition point,   1st-motor		0.00
AC117 Decel1 to   Decel2 frequency   transition point, 1st-motor	0.00 to 590.00(Hz)	0.00

- Depending on the setting of [AC115], switching to Accel/Decel time 2 is selected from the following.
"When the input terminal 031 [2CH] is turned ON",
"When the set frequency [AC116]/[AC117] is reached",
"When the operating frequency is switched between forward and reverse".
- Set the Accel/Decel time1 with [AC120] and [AC122], Accel/Decel time2 with [AC124] and [AC126].
[AC120] to [AC126]
Acceleration/deceleration time setting

Code/Name	Range (unit)	Initial   value
AC120 Acceleration time   setting 1, 1st-motor		30.00
AC122 Deceleration time   setting 1, 1st-motor	0.00 to 3600.00(s)	30.00
AC124 Acceleration time   setting 2, 1st-motor		15.00
AC126 Aeceleration time   setting 2, 1st-motor		15.00

- Assign the Accel/Decel time that takes from OHz to reach the maximum frequency.
- In case that the 2-stage Accel/Decel time function is not meant to be used, the Acceleration time 1[AC120] and Deceleration time 1 [AC122] are used.
- The Accel/Decel time setting is from 0 Hz to the maximum frequency setting ([Hb105]/[Hd105]).

Ex ) In the case of maximum frequency $=60 \mathrm{~Hz}$, Accel time $=$ 30sec
At this case, if command $=30 \mathrm{~Hz}$, it reaches 30 Hz in 15 sec .
(Under conditions when Accel/Decel time does not pause or etc for other functions.)


- Example of using the 2-stage Accel/Decel time function is following.
With $[A C 115]=00$


Call 1(800)985-6929 for Sales
Chapter 4
hitachiacdrive.com
For parameter configuration

## [AC-30] to [AC-88]

Individual Accel/Decel time for Multispeed

Code/Name	Range (unit)	Initial value
AC-30 Accel. time for Multi-speed 1	$\begin{gathered} 0.00 \text { to } \\ 3600.00(\mathrm{~s}) \end{gathered}$	0.00
AC-32 Decel. time for Multi-speed 1		0.00
AC-34 Accel. time for Multi-speed 2		0.00
AC-36 Decel. time for Multi-speed 2		0.00
AC-38 Accel. time for Multi-speed 3		0.00
AC-40 Decel. time for Multi-speed 3		0.00
AC-42 Accel. time for Multi-speed 4		0.00
AC-44 Decel. time for Multi-speed 4		0.00
AC-46 Accel. time for Multi-speed 5		0.00
AC-48 Decel. time for Multi-speed 5		0.00
AC-50 Accel. time for Multi-speed 6		0.00
AC-52 Decel. time for Multi-speed 6		0.00
AC-54 Accel. time for Multi-speed 7		0.00
AC-56 Decel. time for Multi-speed 7		0.00
AC-58 Accel. time for Multi-speed 8		0.00
AC-60 Decel. time for Multi-speed 8		0.00
AC-62 Accel. time for Multi-speed 9		0.00
AC-64 Decel. time for Multi-speed 9		0.00
AC-66 Accel. time for Multi-speed 10		0.00
AC-68 Decel. time for Multi-speed 10		0.00
AC-70 Accel. time for Multi-speed 11		0.00
AC-72 Decel. time for Multi-speed 11		0.00
AC-74 Accel. time for Multi-speed 12		0.00
AC-76 Decel. time for Multi-speed 12		0.00
AC-78 Accel. time for Multi-speed 13		0.00
AC-80 Decel. time for Multi-speed 13		0.00
AC-82 Accel. time for Multi-speed 14		0.00
AC-84 Decel. time for Multi-speed 14		0.00
AC-86 Accel. time for Multi-speed 15		0.00
AC-88 Decel. time for Multi-speed 15		0.00

- Individual Accel/Decel times can be set for multispeed functions[Ab-11] to [Ab-25].

> This will be effective only for Accel/Decel time if the set frequency is the same.

[AC215] to [AC226],[Ad-01] to [Ad-42]
2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range (unit) \|Initial value
AC215 Accel/Decel change trigger, 2ndmotor	Same as AC115
AC216 Accel1 to Accel2 frequency transition point, 2nd-motor	Same as AC116
AC217 Decel1 to Decel2 frequency transition point, 2nd-motor	Same as AC117
AC220 Acceleration time 1, 2nd-motor	Same as AC120
AC222 Deceleration time 1, 2nd-motor	Same as AC122
AC224 Acceleration time 2, 2nd-motor	Same as AC124
AC226 Deceleration time 2, 2nd-motor	Same as AC126

Torque control function setting

Code/Name	Range (unit)	Initial   value
Ad-01 Torque reference   input source selection	01 to $13 / 15^{*} 1$ )	07
Ad-02 Torque reference   value setting	-500.0 to $500.0(\%)$	0.0
Ad-03 Polarity selection for   torque reference	00(According to sign)/   01(Depending on the   operation direction)	00
Ad-04 Switching time of   speed control to torque   control	0 to 1000(ms)	100

- Operations setting of torque control.
- Torque control is enabled when input terminal 067[ATR] torque control enabled is turned ON when control mode AA 121 setting is set to 08 to 12 (sensorless vector control or vector control with sensor) For more information, refer to the P1 User's guide.


## Torque bias setting

Code/Name	Range (unit)	Initial   value
Ad-11 Torque bias   input source selection	01 to $13 / 15 * 1$ )	00
Ad-12 Torque bias   value setting	-500.0 to $500.0(\%)$	0.0
Ad-13   Torque bias polarity	00(According to sign)/   01(Depend on the   operation direction)	00
Ad-14   Enable terminal [TBS]	00(Disable)/01(Enable)	00

- For setting the torque bias.

For more information, refer to the P1 User's guide.
Speed limitation for torque control

Code/Name	Range (unit)	Initial value
Ad-40 Speed limit input source   selection at torque control	01 to $13 * 1$ )	07
Ad-41 Speed limit at torque   control (at Forward rotation)	0.00 to   $590.00(H z) ~ * 2) ~$	0.00
Ad-42 Speed limit at torque      control (at Reverse rotation)	0.00	

- The speed limit during the torque control can be set.

For more information, refer to the P1 User's guide.
*1)00(Disable)/01(Terminal[Ai1])/02(Terminal[Ai2])/03(Terminal[Ai3])/ 04(Terminal[Ai4])/05(Terminal[Ai5])/06(Terminal[Ai6])/07(Parameter Setting)/08(RS485)/09(Option-1)/10(Option-2)/11(Option-3)/12(Pulse train input(internal))/13(Pulse train input(option))/15(PID calc.)
*2) The actual setting range is limited to the maximum frequency setting ([Hb105/205] [Hd105/205]).

Call 1(800)985-6929 for Sales Chapter 4
[AE-01] to [AE-13]
Position control

Code/Name	Range (unit)	Initial   value
AE-01 Electronic gear   setting point selection	00(Feedback side)/   01 (Reference side)	00
AE-02 Electronic gear ratio   numerator	1 to 10000	1
AE-03 Electronic gear ratio   denominator	1 to 10000	1
AE-04 Positioning   completed range setting	0 to 10000(pls)	5
AE-05 Positioning   completed delay time setting	0.00 to 10.00 (s)	0.00
AE-06 Position feedforward   gain setting	0 to 655.35	0.00
AE-07 Position loop gain   setting	0.00 to 100.00	0.50
AE-08 Position bias setting	-2048 to 2048(pls)	0

- Position control requires encoder feedback to the P1-FB option or the input terminal 103[PLA]/104[PLB] assigned to $[A] /[B]$ terminals.
- See also input terminal 073[STAT],074[PUP],075[PDN] and output terminal 042[PDD], 043[POK] for position control.
For more information, refer to the P1 User's guide.


## Home search function setting

Code/Name	Range (unit)	Initial   value
AE-10 Stop position   selection of home search   function	00(Parameter)/   01(Option 1)/   02(Option 2)/   $03($ Option 3)/	00
AE-11 Stop position of   home search function	0 to 4095	0
AE-12 Speed reference   of home search function	0.00 to 120.00(Hz) *1)	0.00
AE-13 Direction of   home search function	$00($ Forward)/01(Reverse)	00

*1) If the maximum frequency setting ([Hb105/205] [Hd105/205]) is less than 120 Hz , the maximum value of [AE-12] will be limited to it.

- Adjust the Home search function of the position control. This function is valid only when AA121=10 and AA123= 00,01 . And also assign the input terminal 069[ORT] Home search function and 109 [PLZ] Pulse train input $Z$. For more information, refer to the P1 User's guide.
[AE-20] to [AE-61]
Absolute position control

Code/Name	Range (unit)	Initial value
AE-20 Position reference 0	When   [AA121] $\neq 10$   or [AA121] $\neq 03$   -268435455 to +268435455 (pls)	0
AE-22 Position reference 1		0
AE-24 Position reference 2		0
AE-26 Position reference 3		0
AE-28 Position reference 4		0
AE-30 Position reference 5		0
AE-32 Position reference 6		0
AE-34 Position reference 7		0
AE-36 Position reference 8		0
AE-38 Position reference 9		0
AE-40 Position reference 10		0
AE-42 Position reference 11		0
AE-44 Position reference 12		0
AE-46 Position reference 13		0
AE-48 Position reference 14		0
AE-50 Position reference 15		0
AE-52 Position control range setting (forward)	When [AA121] $\neq 10$ or [AA123] $\neq 03$ 0 to +268435455 (pls)   Other than above.   0 to +1073741823(pls	268435455
AE-54 Position control range setting (reverse)	When [AA121] $\neq 10$   or [AA123] $\neq 03$   -268435455 to 0 (pls)   Other than above. $\begin{aligned} & -1073741823 \\ & \text { to } 0 \text { (pls) } \\ & \hline \end{aligned}$	-268435455
AE-56 Position control mode selection	00(Limited)/   01(Not limited)	00

- Set the absolute position function.
- Absolute position reference 0 to 15 can be switched by the combination of input terminals 076[CP1] multistage position 1 to 079[CP4] multistage position 4. See also positon contorol functions such as input terminal 082[FOT] Forward over travel, 083 [ROT] Reverse over travel, 084[SPD] speed/position switching, 085[PSET] position data presetting and etc. For more information, refer to the P1 User's guide.


## Teach-in function

Code/Name	Range (unit)	Initial value
AE-60 Teach-in function   target selection	00 to 15(X00 to X15)	00

- Sets the teaching position for absolute position control.
- Use the input terminal $110[\mathrm{TCH}]$ for teach-in function. For more information, refer to the P1 User's guide.
Enable position saving when power is cut off

Code/Name	Range (unit)	Initial value
AE-61 Save current position   at power off	00(Disable)/   $01($ Enable)	00

- When AE-61 is set to 01, the absolute position is automatically saved into the inverter at the power supply is cut-off.
For more information, refer to the P1 User's guide.
[AE-62] to [AE-73]
Pre-set position

Code/Name	Range (unit)	Initial value
AE-62	When [AA121] $\neq 10$ or [AA121] $\neq 03$	
Pre-set position	-268435455 to +268435455 (pls)	0
data	Other than above.   -1073741823 to +107374182 (pls)	

- During absolute position control, turning on the input terminal 085[PSET] sets the current position to the value set in [AE-62] preset position data.
The current position monitor [dA-20] is also changed. For more information, refer to the P1 User's guide.


## Positioning operation adjustment

Code/Name	Range (unit)	Initial   value
AE-64 Deceleration stop   distance calculation gain	50.00 to   $200.00(\%)$	100.00
AE-65 Deceleration stop   distance calculation bias	0.00 to $655.35(\%)$	0.00
AE-66 Speed limit in APR   control	0.00 to 100.00(\%)	1.00
AE-67 APR start speed	0.00 to $100.00(\%)$	0.20

*APR: Automatic Position Regulator

- Adjustment of control operation for positioning operation.
For more information, refer to the P1 user's guide.


## Homing (Return to reference position)

Code/Name	Range (unit)	Initial   value
AE-70   Homing function selection	00(Low-speed)/   01(High-Speed 1)/   02(High-Speed 2)	00
AE-71   Direction of homing function	00(Forward)/   01(Reverse)	00
AE-72 Low-speed homing   speed setting	0.00 to $10.00(\mathrm{Hz)}$	0.00
AE-73 High-speed homing   speed setting	0.00 to $590.00(\mathrm{Hz)}$ *1)	0.00

${ }^{*} 1$ ) The actual setting range is limited to the maximum frequency setting ([Hb105/205] [Hd105/205]).

- Set the Homing function for absolute position mode.
- When using the homeing function, assign the input terminal 080[ORL] Limit signal of homing function and 081[ORG] Start signal of homing function. For more information, refer to the P1 user's guide.
[AF101] to [AF10ㅇ]
DC braking (DB) function

Code/Name	Range (unit)	$\begin{array}{c}\text { Initial } \\ \text { value }\end{array}$
$\begin{array}{l}\text { AF101 DC braking } \\ \text { selection, 1st-motor }\end{array}$	$\begin{array}{l}\text { 00(Disable)/01(Enable)/ } \\ \text { 02(Frequency reference) }\end{array}$	00
$\begin{array}{l}\text { AF102 Braking type } \\ \text { selection, 1st-motor }\end{array}$	$\begin{array}{l}\text { 00(DC braking)/ } \\ \text { 01(Speed servo-lock)/ } \\ \text { 02(Position servo-lock) }\end{array}$	00
$\begin{array}{l}\text { AF103 DC braking } \\ \text { frequency, 1st-motor }\end{array}$	0.00 to 590.00(Hz)	0.50
$\begin{array}{l}\text { AF104 DC braking delay } \\ \text { time, 1st-motor }\end{array}$	0.00 to 5.00(s)	0.00
$\begin{array}{l}\text { AF105 DC braking force } \\ \text { setting, 1st-motor *2) }\end{array}$	0 to 100(\%)	30
$\begin{array}{l}\text { AF106 DC braking active } \\ \text { time at stop, 1st-motor }\end{array}$	0.00 to 60.00(s)	0.00
$\begin{array}{l}\text { AF107 DC braking } \\ \text { operation method selection, } \\ \text { 1st-motor }\end{array}$	00 (Edge)/	$01($ Level)

- DB function can be activated at start-up and stop state ([AF101]=01) or at setting frequency ([AF101]=02), selectively.
- DC braking can be also used if Intelligent input terminal 030[DB] is ON.
*2) Depending on the setting of Load type selection [Ub03] and inverter capacity, an internal limit is applied to DC braking force.
- Stop DB example (Braking force adjusted by [AF105])

- Start DB example (Braking force adjusted by [AF108])

- Frequency reference DB example (Braking force adjusted by [AF105])

- When the DC braking time is set as 0.00 (s), DC braking is not operational.

Call 1(800)985-6929 for Sales
Chapter 4
[AF120] to [AF152]
Brake control function

Code/Name	Range (unit)	Initial value
AF120 Contactor control enable, 1st-motor	00(Disable)/   01(Enable:   primary side)   02(Enable:   secondary   side)	00
AF121 Run delay time, 1st-motor	0.00 to 2.00(s)	0.20
AF122 Contactor off delay time, 1st-motor	0.00 to 2.00(s)	0.10
AF123 contactor response check time, 1st-motor	0.00 to 5.00(s)	0.10
AF130   Brake control enable, 1st-motor	00(Disable)/   01(Brake control   1: Common)/   02(Brake control   1: Separate)/   03(Brake control   2)	00
AF131 Brake release wait time, 1st-motor(Forward)	0.00 to 5.00(s)	0.00
AF132 Brake wait time for accel., 1st-motor(Forward)	0.00 to 5.00(s)	0.00
AF133 Brake wait time for stopping, 1st-motor (Forward)	0.00 to 5.00(s)	0.00
AF134 Brake confirmation signal wait time, 1st-motor (Forward)	0.00 to 5.00(s)	0.00
AF135 Brake release frequency setting, 1st-motor (Forward)	0.00 to $590.00(\mathrm{~Hz})$	0.00
AF136 Brake release current setting, 1st-motor(Forward)	Inverter rated current $\times(0.0 \text { to } 2.0)(\mathrm{A})$	
AF137 Braking frequency, 1stmotor (Forward)	0.00 to 590.00(Hz)	0.00
AF138 Brake release wait time, 1st-motor (Reverse)	0.00 to 5.00(s)	0.00
AF139 Brake wait time for accel., 1st-motor (Reverse)	0.00 to 5.00(s)	0.00
AF140 Brake wait time for stopping, 1st-motor(Reverse)	0.00 to 5.00(s)	0.00
AF141 Brake confirmation signal wait time, 1st-motor(Reverse)	0.00 to 5.00(s)	0.00
AF142 Brake release frequency setting, 1st-motor (Reverse)	0.00 to $590.00(\mathrm{~Hz})$	0.00
AF143 Brake release current setting, 1st-motor(Reverse)	Inverter rated current $\times(0.0$ to 2.0$)(\mathrm{A})$	
AF144 Braking frequency, 1stmotor (Reverse)	0.00 to 590.00 (Hz)	0.00
AF150 Brake open delay time, 1stmotor	0.00 to 2.00(s)	0.20
AF151 Brake close delay time, 1stmotor	0.00 to 2.00(s)	0.20
AF152 Brake response check time, 1st-motor	0.00 to 5.00 (s)	0.10


Code/Name	Range (unit)	Initial   value
AF153 Servo lock/ DC injection time   at start, 1st-motor	0.00 to 10.00(s)	0.60
AF154 Servo lock/ DC injection time   at stop, 1st-motor	0.00 to 10.00(s)	0.60

- Set brake control and contactor control. In addition to these parameters, the brake control function uses the input terminal 037[BOK] Answer back from Brake and the output terminal 037[BRK] Brake release, 038[BER] Brake error. And the contactor control function uses the input terminal 107[COK] Contactor check signal and the output terminal 039[CON] Contactor control.
For more information, refer to the P1 User's guide.
2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range (unit)	Initial value
AF201 DC braking selection, 2nd-motor	Same as AF101	
AF202 Braking type selection, 2nd-motor	Same as AF102	
AF203 DC braking frequency, 2nd-motor	Same as AF103	
AF204 DC braking delay time, 2nd-motor	Same as AF104	
AF205 DC braking force setting, 2nd-motor	Same as AF105	
AF206 DC braking active time at stop, 2nd-motor	Same as AF106	
AF207 DC braking operation method selection, 2nd-motor	Same as AF107	
AF208 DC braking force at start, 2nd-motor	Same as AF108	
AF209 DC braking active time at start, 2nd-motor	Same as AF109	
AF220 Contactor control enable, 2nd-motor	Same as AF120	
AF221 Run delay time, 2nd-motor	Same as AF121	
AF222 Contactor off delay time, 2nd-motor	Same as AF122	
AF223 Contactor response check time, 2nd-motor	Same as AF123	
AF230 Brake control enable, 2nd-motor	Same as AF130	
AF231 Brake release wait time, 2nd-motor (Forward)	Same as AF131	
AF232 Brake wait time for accel., 2nd-motor (Forward)	Same as AF132	
AF233 Brake wait time for stopping, 2nd-motor (Forward)	Same as AF133	
AF234 Brake confirmation signal wait time, 2nd-motor(Forward)	Same as AF134	
AF235 Brake release frequency setting, 2nd-motor (Forward)	Same as AF135	
AF236 Brake release current setting, 2nd-motor (Forward)	Same as AF136	
AF237 Braking frequency, 2nd-motor (Forward)	Same as AF137	
AF238 Brake release wait time, 2nd-motor (Reverse)	Same as AF138	
AF239 Brake wait time for accel., 2nd-motor (Reverse)	Same as AF139	
AF240 Brake wait time for stopping, 2nd-motor(Reverse)	Same as AF140	
AF241 Brake confirmation signal wait time, 2nd-motor(Reverse)	Same as AF141	
AF242 Brake release frequency setting, 2nd-motor(Reverse)	Same as AF142	
AF243 Brake release current setting, 2nd-motor (Reverse)	Same as AF143	
AF244 Braking frequency, 2nd-motor (Reverse side)	Same as AF144	
AF250 Brake open delay time, 2nd-motor	Same as AF150	
AF251 Brake close delay time, 2nd-motor	Same as AF151	
AF252 Brake response check time, 2nd-motor	Same as AF152	
AF253 Servo lock/DC injection time at start,2ndmotor	Same as AF153	
AF254 Servo lock/DC injection time at stop, 2ndmotor	Same as AF154	

Call 1(800)985-6929 for Sales
Chapter 4
sales@hitachiacdrive.com
For parameter configuration

## [AG101] to [AG113]

Resonant frequency avoidance (Jump)

Code/Name	Range (unit)	Initial value
AG101 Jump frequency 1, 1st-motor	$\begin{aligned} & \hline 0.00 \text { to } \\ & 590.00(\mathrm{~Hz}) \\ & \hline \end{aligned}$	0.00
AG102 Jump frequency width 1, 1stmotor	0.00 to 10.00 (Hz)	0.00
AG103 Jump frequency 2, 1st-motor	$\begin{aligned} & \hline 0.00 \text { to } \\ & 590.00(\mathrm{~Hz}) \\ & \hline \end{aligned}$	0.00
AG104 Jump frequency width 2, 1stmotor	0.00 to 10.00 (Hz)	0.00
AG105 Jump frequency 3, 1st-motor	$\begin{aligned} & \hline 0.00 \text { to } \\ & 590.00(\mathrm{~Hz}) \\ & \hline \end{aligned}$	0.00
AG106 Jump frequency width 3, 1stmotor	0.00 to 10.00 (Hz)	0.00

- Using above parameters prevents from the passing of the output frequency in a resonant point. Output frequency changes discontinuously.


Motor Accel/Decel time dwell (Hold)

Code/Name	Range (unit)	Initial   value
AG110 Acceleration stop frequency   setting, 1st-motor	0.00 to   $590.00(\mathrm{~Hz})$	0.00
AG111 Acceleration stop time setting, 1st-   motor	0.0 to $60.0(\mathrm{~s})$	0.0
AG112 Deceleration stop frequency   setting, 1st-motor	0.00 to   $590.00(\mathrm{~Hz})$	0.00
AG113 Deceleration stop time setting, 1st-   motor	0.0 to 60.0(s)	0.0

- This dwell function will allow the inverter to stop the Accel/Decel time operation during the Accel/Decel operation stop time after the inverter output reaching as the setted by Accel/Decel time operation stop frequency, when the load has a large inertia.
- If the Intelligent input terminal 100 [HLD] is in ON state, the acceleration and deceleration will be stopped (Hold activation).

[AG-20] to [AG213]


## Jogging function

Code/Name	Range (unit)	Initial   value
AG-20   Jogging   frequency	0.00 to 10.00(Hz)	6.00
AG-21	00 (Free run at Jogging stop (Disable at run))   01 (Deceleration stop at Jogging stop   (Disable at run))	02 (Dynamic brake at Jogging stop   (Disable at run))
Jogging (Free run at Jogging stop (Enable at run))   stop mode   selection   04 (Deceleration stop at Jogging stop   (Enable at run))	00	
05 (Dynamic brake at Jogging stop		
(Enable at run))		

- The jogging frequency is outputted when Input terminal $029[J G]$ is active (ON) and the RUN command is given. The frequency and stop method can be set when the jogging motion performing.
- In the case [AG-21]=01


2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range   (unit)
Initial   value	
AG201 Jump frequency 1, 2nd-motor	Same as AG101
AG202 Jump frequency width 1, 2nd-   motor	Same as AG102
AG203 Jump frequency 2, 2nd-motor	Same as AG103
AG204 Jump frequency width 2, 2nd-   motor	Same as AG104
AG205 Jump frequency 3, 2nd-motor	Same as AG105
AG206 Jump frequency width 3, 2nd-   motor	Same as AG106
AG210 Acceleration stop frequency   setting, 2nd-motor	Same as AG110
AG211 Acceleration stop time setting   2nd-motor	Same as AG111
AG212 Deceleration stop frequency   setting, 2nd-motor	Same as AG112
AG213 Deceleration stop time setting,   2nd-motor	Same as AG113

[AH-01] to [AH-06]
PID1 function

Code/Name	Range (unit)	Initial value
AH-01 PID1 enable	00(Disable)/   01(Enable)/   02(Enable (with inverted   output)	00

- The PID1 function is enabled with the above parameter.
- If $[\mathrm{AH}-01]=01$ when the PID output reaches negative value, the PID output is limited to 0 .
- If [AH-01]=02 when the PID output reaches negative value, the PID output lets out an inverted output.
- When the PID output is negative, the motor will rotate in the contrary direction.
- If input terminal 041[PID] is ON, the PID control is disabled and the PID target value becomes the frequency reference.

Code/Name	Range (unit)	Initial value
AH-02 PID1 deviation inversion	00(Disable)/   01(Enable)	00



Code/Name	Range (unit)	Initial   value
AH-03   Unit selection for PID1	Refer <unit table> of   the end of this   chapter.	01
$\mathbf{A H - 0 4 ~ P I D 1 ~ a d j u s t m e n t ~ ( 0 \% ) ~}$	-10000 to 10000	0
AH-05 PID1 adjustment 100\%)	-10000 to 10000	10000
AH-06 PID1 Adjustment   (decimal point position)	0 to 4	2

- The unit and display data related to the output of the PID control can be changed.
- PID1 is capable of 3 target value inputs and 3 feedback inputs, and various operations can be performed with [AH-50] and [AH-54].

■AH-50 = 01 to $04(+,-, \times, /)$
Calculation targets are PID1 set-point 1

(selected with [AH-07] and [AH-10] to [AH-40]) and PID1 setpoint 2 (selected with [AH-42]).
[AH-07] to [AH-50]

Code/Name	Range (unit)	Initial value
AH-07 PID1 set-point 1 input source selection	00 to 13 *2)	09
AH-10 PID1 set-point-1 setting	$\begin{gathered} -100.00 \text { to } \\ 100.00(\%) \\ \left.{ }^{*} 1\right) \end{gathered}$	0.00
AH-12 PID1 multistage set-point 1		0.00
AH-14 PID1 multistage set-point 2		0.00
AH-16 PID1 multistage set-point 3		0.00
AH-18 PID1 multistage set-point 4		0.00
AH-20 PID1 multistage set-point 5		0.00
AH-22 PID1 multistage set-point 6		0.00
AH-24 PID1 multistage set-point 7		0.00
AH-26 PID1 multistage set-point 8		0.00
AH-28 PID1 multistage set-point 9		0.00
AH-30 PID1 multistage set-point 10		0.00
AH-32 PID1 multistage set-point 11		0.00
AH-34 PID1 multistage set-point 12		0.00
AH-36 PID1 multistage set-point 13		0.00
AH-38 PID1 multistage set-point 14		0.00
AH-40 PID1 multistage set-point 15		0.00
AH-42 PID1 set-point 2 input source selection	00 to 13 *2)	00
AH-44 PID1 set-point 2 setting	$\begin{aligned} & \hline-100.00 \text { to } \\ & 100.00(\%) * 1) \\ & \hline \end{aligned}$	0.00
AH-46 PID1 set-point 3 input source selection	00 to 13 *2)	0.00
AH-48 PID1 set-point 3 setting	$\begin{aligned} & \hline-100.00 \text { to } \\ & 100.00(\%) * 1) \end{aligned}$	0.00
AH-50 PID1 set-point calculation symbol selection	01(Addition) 02(Subtraction) 03(Multiplication) 04(Division) 05(Minimum deviation) 06(Maximum deviation)	01

*1) Display range can be set by [AH-04], [AH-05] and [AH-06].
*2) 00(Not used )/01(Terminal[Ai1])/02(Terminal[Ai2])/ 03(Terminal[Ai3])/04(Terminal[Ai4])/05(Terminal[Ai5])/ 06(Terminal[Ai6])/07(Parametersetting)/08(RS485)/09(Option-1)/ 10(Option-2)/11(Option-3)/12(Pulse train input (internal)/ 13(Pulse train input (option)

- If Input terminal 051[SVC1] to 054[SVC4] are used, the PID1 set-point 1 can be changed for the Multistage.

Multistage value	SVC4	SVC3	SVC2	SVC1
AH-10	OFF	OFF	OFF	OFF
AH-12	OFF	OFF	OFF	
AH-14	OFF	OFF		OFF
AH-16	OFF	OFF		
AH-18	OFF		OFF	OFF
AH-20	OFF		OFF	
AH-22	OFF			OFF
AH-24	OFF			
AH-26		OFF	OFF	OFF
AH-28		OFF	OFF	
AH-30		OFF		OFF
AH-32		OFF		
AH-34			OFF	OFF
AH-36			OFF	
AH-38				OFF
AH-40				

Call 1(800)985-6929 for Sales
Chapter 4
[AH-51] to [AH-54]

Code/Name	Range (unit)	Initial value
AH-51 PID1 feedback 1 input source selection	00 to 06/08 to $13 * 1$ )	01
AH-52 PID1 feedback 2 input source selection		00
AH-53 PID1 feedback 3 input source selection		00
AH-54 PID1 feedback calculation symbol selection	01(Addition FB1+FB2)/   02(Subtraction FB1-FB2)/   03(Multiplication   FB1×FB2)/   04(Division FB1 / FB2)/   05(Square Root FB1)/   06(Square Root FB2)/   07(Square Root(FB1-FB2))/   08(Average of the three inputs)   09(Minimum of the three inputs)   10(Maximum of the three inputs)	01

*1)00(Not used)/01(Terminal[Ai1])/02(Terminal[Ai2])/03(Terminal[Ai3])/
04(Terminal[Ai4])/05(Terminal[Ai5])/06(Terminal[Ai6]) 08(RS485)/ 09(Option-1)/10(Option-2)/11(Option-3)/ 12(Pulse train input(internal))/13(Pulse train input(option))

■AH-50 $=05$, 06 (minimum deviation, maximum deviation) The maximum value or the minimum value of deviation 1 to 3 of PID1 is taken as PID1 deviation (at this time, [AH-54] becomes invalid).


- PID feedback of PID1 by setting [AH-51] to [AH-54] Is calculated.
- When 01 to 07 is selected in [AH-54], the operation target is [AH-51] PID1 feedback data 1 (FB1) and [AH-52] PID1 feedback data 2 (FB2). When 08 to 10 is selected in [AH-54], feedback data 1 ([AH-51] selection (FB1)) to 3 ([AH-53] selection (FB3)) are targeted.

[AH-60] to [AH-70]

Code/Name	Range (unit)	Initial   value
AH-60 PID1 gain change   method selection	00(Using gain-1 only)/   01 ([PRO] terminal)	00
AH-61 PID1 proportional   gain 1	0.0 to 100.0	1.0
AH-62 PID1 integral time   constant 1	0.0 to 3600.0(s)	1.0
AH-63 PID1 derivative gain   1	0.00 to 100.00(s)	0.00
AH-64 PID1 proportional   gain 2	0.0 to 100.0	0.0
AH-65 PID1 integral time   constant 2	0.0 to 3600.0(s)	0.0
AH-66 PID1 derivative gain   2	0.00 to 100.00(s)	0.00
AH-67 PID1 gain change   time	0 to $10000(\mathrm{~ms})$	100



- If input terminal 042 [PIDC] is active (ON), the value of the integral constant is cleared. If it is done while the inverter is in running, the driving condition may become unstable
- The PID gain can be switched by turning on the input terminal 055 [PRO]. When OFF gain 1 is enabled.
When ON gain 2 is enabled.

- The input source for PID feed forward control is selected by AH-70.

Call 1(800)985-6929 for Sales
Chapter 4
hitachiacdrive.com
sales@hitachiacdrive.com
For parameter configuration

## [AH-71] to [AH-74]

Code/Name	Range (unit)	Initial   value
AH-71 PID1 output range	0.00 to $100.00(\%)$	0.00



- [AH-71] Limits the output range of the PID. If [AH-71] = 0.00 the limit is disabled.

Code/Name	Range (unit)	Initial   value
AH-72 PID1 over deviation   level	0.00 to $100.00(\%)$	3.00



- When the PID deviation pass over the $\pm[\mathrm{AH}-72]$, the output terminal 045[OD] Deviation over for PID control is ON.

Code/Name	Range (unit)	Initial   value
AH-73 Turn-off level for the   PID1 feedback compare signal	0.00 to 100.00(\%)	100.00
AH-74 Turn-on level for the   PID1 feedback compare signal	0.00 to 100.00(\%)	0.00



- When the PID feedback cross over the [AH-73] level, the output terminal $046[$ FBV] is OFF. If the PID feedback crosses under the [AH-74] level, 046[FBV] is turned on.
[ $\mathrm{AH}-\underline{75}]$ to [AH-92]
PID soft start function

Code/Name	Range (unit)	Initial   value
AH-75 PID soft start   function enable	00(Disable)/   01(Enable)	00
AH-76 PID soft start target   level	0.00 to 100.00(\%)	100.00
AH-78 Acceleration time   setting for PID soft start   function	0.00 to 3600.00(s)	30.00
AH-80 PID soft start time	0.00 to 600.00(s) *1)	0.00
AH-81 PID soft start error   detection enable	00(Disable)/   01 (Enable: Error[E120])   02(Enable:Warning[SSE])	00
AH-82 PID soft start error   detection level	0.00 to 100.00(\%)	0.00

$\left.{ }^{*} 1\right)$ Ver2.01 and older, setting range is 0.00 to 100.0

- In order to start the shockless PID, normal operation is performed with the base frequency $\times[\mathrm{AH}-76]$ as the target frequency from the start of operation to the set time of [AH-80].
- The acceleration time at soft start can be set with [AH78].

- When an error is judged, the operation changes depending on the setting of [AH-81] PID soft start error detection enable.
- If [AH-81] is 00, nothing is done.
- If [AH-81] is 01, the abnormal state will trip with [E120] PID start error after the set time of [AH-80] has elapsed.
- If [AH-81] is 02, the output terminal 093[SSE] PID soft start error signal turns ON after the abnormal state has passed for the [AH-80] setting time.
- Output terminal 093[SSE] signal is turned ON while the inverter is in running.


## [AH-85] to [AH-96]

## PID sleep function

Code/Name	Range (unit)	Initial   value
AH-85   PID sleep trigger selection	00(Disable)/   01(Low output)/   02([SLEP] terminal)	00
AH-86 PID sleep start level	0.00 to 590.00(Hz)	0.00
AH-87 PID sleep active time	0.00 to $100.00(\mathrm{~s})$	0.00
AH-88 Enable set-point boost   before PID sleep	$00($ Disable)/   01(Enable)	00
AH-89 Set-point boost time   before PID sleep	0.00 to 100.00(s)	0.00
AH-90 set-point boost value   before PID sleep	0.00 to 100.00(\%)	0.00
AH-91 Minimum RUN time   before PID sleep	0.00 to 100.00(s)	0.00
AH-92 Minimum active time   of PID sleep	0.00 to 100.00(s)	0.00
AH-93 PID wake trigger   selection	01 (Deviation)/   02(Low feedback)/   03([WAKE] terminal)	01
AH-94   PID wake start level	0.00 to 100.00(\%)	0.00
AH-95   PID wake start time	0.00 to 100.00(s)	0.00
AH-96 PID wake start   deviation value	0.00 to 100.00(\%)	0.00

- The PID sleep function temporally reduces the PID output, achieving an energy saving state.
- If [AH-88]"Enable set-point boost before PID sleep" is enable, during [AH-89] setting time before PID sleep, the [AH-90] boost amount is added to the PID target value to increase the feedback amount.
As a result, it is possible to maintain sleep for a longer time.
- Operation example of the sleep function.

Example 1) [AH-85]=01(Low output) [AH-93]=01(deviation)


Example 2) [AH-85]=01(Low output) [AH-93]=02(Low feedback)


Example 3) [AH-85]=02(output terminal 058[SLEP]) [AH-93]=03(output terminal 059[WAKE])


■There are 4 independent PID control blocks in P1. By switching the input terminal 056[PIO1]/057[PIO2], PID1 to PID4 can be switched.


Combination of [PIO1]/[PIO2]

	057[PIO2]	056[PIO1]
PID1 is enabled	OFF	OFF
PID2 is enabled	OFF	ON
PID3 is enabled	ON	OFF
PID4 is enabled	ON	ON

[AJ-01] to [AJ-12]
PID2 function

Code/Name	Range (unit)	Initial   value
AJ-01 PID2   enable	00(Disable)/01(Enable)/   02(Enable (with inverted output))	00

- The PID2 function is enabled with the above parameter.
- If [AJ-01]=01 when the PID output reaches a negative value, the PID output is limited to 0 .
- If [AJ-01]=02 when the PID output reaches a negative value, the PID output lets out an inverted output.
- By turning on the input terminal 043[PID2], the PID2 output becomes 0 .

Code/Name	Range (unit)	Initial value
AJ-02 PID2 deviation inversion	00(Disable)/   01(Enable)	00
		PID deviation

- PID2 deviation can be reversed.

Code/Name	Range (unit)	Initial   value
AJ-03 PID2 unit selection	refer <unit table> of   the end of this   chapter.	01
AJ-04 PID2 scale adjustment   (0\%)	-10000 to 10000	0
AJ-05 PID2 scale adjustment   (100\%)	-10000 to 10000	10000
AJ-06 PID2 scale adjustment   (decimal point position)	0 to 4	2

- The unit and display data related to the output of the PID control can be changed.

Code/Name	Range (unit)	Initial   value
AJ-07 PID2 set-point input   source selection	00 to $13,15 * 2$ )	07
AJ-10 PID2 set-point setting	-100.00 to $100.00(\%)$   $\left.{ }^{*} 1\right)$	0.00

*1) Adjustable with [AJ-04] [AJ-05] [AJ-06]

- When PID2 target value input is selected, if the selected is the parameter setting, [AJ-10] gets enabled.

Code/Name	Range (unit)	Initial   value
AJ-12 PID2 feedback input   source selection	00 to $06 / 08$ to 13 *2)	02

- Selects the PID2 feedback reference.
*2) 00(Not sed)/01(Terminal[Ai1])/02(Terminal[Ai2])/03(Terminal[Ai3])/ 04(Terminal[Ai4])/05(Terminal[Ai5])/06(Terminal[Ai6])/ 07(Parameter setting)/08(RS485)/09(Option-1)/10(Option-2)/ 11(Option-3)/12(Pulse train input (internal)/ 13(Pulse train input (option)/15(PID1 output)
[AJ-13] to [AJ-19]

Code/Name	Range (unit)	Initial   value
AJ-13 PID2 proportional gain	0.0 to 100.0	1.0
AJ-14 PID2 integral time constant	0.0 to $3600.0(\mathrm{~s})$	1.0
AJ-15 PID2 derivative gain	0.00 to $100.00(\mathrm{~s})$	0.00

- The PID2 gains are set by the above parameters.
- If input terminal 044[PIDC2] is active (ON), the value of the integral constant is cleared. If it is done while the inverter is in running, the driving condition may become unstable.

Code/Name	Range (unit)	Initial value
AJ-16 PID2 output range	0.00 to $100.00(\%)$	0.00



- [AJ-16] Limits the output range of the PID. If [AJ-16] $=0.00$ the limit is disabled.

Code/Name	Range (unit)	Initial value
AJ-17   PID2 over deviation level	0.00 to $100.00(\%)$	3.00



- When the PID deviation pass over $\pm[\mathrm{AJ}-17]$, the output terminal 047[OD2] is activated.

Code/Name	Range (unit)	Initial   value
AJ-18 Turn-off level for the PID2   feedback compare signal	0.00 to 100.00(\%)	100.00
AJ-19 Turn-on level for the PID2   feedback compare signal	0.00 to 100.00(\%)	0.00



- When the PID feedback cross over the [AJ-18] level, the output terminal 048[FBV2] is OFF. If the PID feedback crosses under the [AJ-19] level, 048[FBV2] is turned on.
[AJ-21] to [AJ-32]
PID3 function

Code/Name	Range (unit)	Initial   value
AJ-21 PID3   enable	00(Disable)/01(Enable)/   02(Enable (with inverted output))	00

- The PID3 function is enabled with the above parameter.
- If [AJ-21]=01 when the PID output reaches a negative value, the PID output is limited to 0 .
- If [AJ-21]=02 when the PID output reaches a negative value, the PID output lets out an inverted output.
- By turning on the input terminal 045[PID3], the PID3 output becomes 0 .

- PID3 deviation can be reversed.

Code/Name	Range (unit)	Initial   value
AJ-23 PID3 unit selection	refer <unit table> of   the end of this   chapter.	01
AJ-24   PID3 scale adjustment (0\%)	-10000 to 10000	0
AJ-25   PID3 scale adjustment (100\%)	-10000 to 10000	10000
AJ-26 PID3 scale adjustment   (decimal point position)	0 to 4	2

- You can switch the display data and the display unit involved in the output of the PID control by the calculation.

Code/Name	Range (unit)	Initial   value
AJ-27 PID3 set-point input   source selection	00 to $13 * 1$ )	07
AJ-30 PID3 set-point setting	-100.00 to 100.00(\%)   $* 2)$	0.00

*2) Adjustable with [AJ-24] [AJ-25] [AJ-26]

- When PID3 target value input is selected, if the selected is the parameter setting, [AJ-30] gets enabled.

Code/Name	Range (unit)	Initial   value
AJ-32 PID3 feedback input   source selection	00 to $06 / 08$ to $13 * 1$ )	01

- Selects the PID3 feedback reference.
*1) 00(Not used)/01(Terminal[Ai1])/02(Terminal[Ai2])/03(Terminal[Ai3])/ 04(Terminal[Ai4])/05(Terminal[Ai5])/06(Terminal[Ai6])/07(Parameter setting)/08(RS485)/09(Option-1)/10(Option-2)/11(Option-3)/12(Pulse train input (internal)/13(Pulse train input (option)

Code/Name	Range (unit)	Initial   value
AJ-33 PID3 proportional gain	0.0 to 100.0	1.0
AJ-34 PID3 integral time constant	0.0 to $3600.0(\mathrm{~s})$	1.0
AJ-35 PID3 derivative gain	0.00 to $100.00(\mathrm{~s})$	0.00

- The PID3 gains are set by the above parameters
- If input terminal 046[PIDC3] is active (ON), the value of the integral constant is cleared. If it is done while the inverter is in running, the driving condition may become unstable.

Code/Name	Range (unit)	Initial value
AJ-36 PID3 output variable	0.00 to $100.00(\%)$	0.00



- [AJ-36] Limits the output range of the PID. If [AJ-36] $=0.00$ the limit is disabled.

Code/Name	Range (unit)	Initial value
AJ-37 PID3 over deviation   level	0.00 to $100.00(\%)$	3.00



- When the PID deviation pass over $\pm[A J-37]$, the output terminal 089[OD3] is activated.

Code/Name	Range (unit)	Initial   value
AJ-38 Turn-off level for the PID3   feedback compare signal	0.00 to 100.00(\%)	100.00
AJ-39 Turn-on level for the PID3   feedback compare signal	0.00 to 100.00(\%)	0.00



- When the PID feedback cross over the [AJ-38] level, the output terminal 090[FBV3] is OFF. If the PID feedback crosses under the [AJ-39] level, 090[FBV3] is turned on.
[AJ-41] to [AJ-52]
PID4 function

Code/Name	Range (unit)	Initial   value
AJ-41 PID4   enable	00(Disable)/01(Enable)/   02(Enable (with inverted output)	00

- The PID4 function is enabled with the above prameter.
- If [AJ-41]=01 when the PID output reaches a negative value, the PID output is limited to 0 .
- If [AJ-41]=02 when the PID output reaches a negative value, the PID output lets out an inverted output.
- By turning on the 047[PID4] terminal, the PID4 output becomes 0 .

- PID4 deviation can be reversed.

Code/Name	Range (unit)	Initial   value
AJ-43 PID4 unit selection	refer <unit table> of   the end of this   chapter.	01
AJ-44   PID4 scale adjustment (0\%)	-10000 to 10000	0
AJ-45   PID4 scale adjustment (100\%)	-10000 to 10000	10000
AJ-46 PID4 scale adjustment   (decimal point position)	0 to 4	2

- You can switch the display data and the display unit involved in the output of the PID control by the calculation.

Code/Name	Range (unit)	Initial   value
AJ-47 PID4 set-point input   source selection	00 to $13{ }^{*} 1$ )	07
AJ-50 PID4 set-point setting	-100.00 to $100.00(\%)$   $\left.{ }^{*} 2\right)$	0.00

*2) Adjustable with [AJ-44] [AJ-45] [AJ-46]

- When PID4 target value input is selected, if the selected is the parameter setting, [AJ-50] gets enabled.

Code/Name	Range (unit)	Initial   value
AJ-52 PID4 feedback input   source selection	00 to $06 / 08$ to $13 * 1$ )	01

- Selects the PID4 feedback reference.
*1) 00(Not used)/01(Terminal[Ai1])/02(Terminal[Ai2])/03(Terminal[Ai3])/ 04(Terminal[Ai4])/05(Terminal[Ai5])/06(Terminal[Ai6])/07(Parameter setting)/08(RS485)/09(Option-1)/10(Option-2)/11(Option-3)/12(Pulse train input (internal)/13(Pulse train input (option)
[AJ-53] to [AJ-59]

Code/Name	Range (unit)	Initial   value
AJ-53 PID4 proportional gain	0.0 to 100.0	1.0
AJ-54 PID4 integral time constant	0.0 to $3600.0(\mathrm{~s})$	1.0
AJ-55 PID4 derivative gain	0.00 to $100.00(\mathrm{~s})$	0.00

- The PID4 gains are set by the above parameters.
- If input terminal 048[PIDC4] is active (ON), the value of the integral constant is cleared. If it is done while the inverter is in running, the driving condition may become unstable.

Code/Name	Range (unit)	Initial value
AJ-56 PID4 output range	0.00 to $100.00(\%)$	0.00



- [AJ-56] Limits the output range of the PID. If [AJ-56] $=0.00$ the limit is disabled.

Code/Name	Range (unit)	Initial value
AJ-57 PID4 over deviation   level	0.00 to $100.00(\%)$	3.00



- When the PID deviation pass over $\pm[$ AJ- 57$]$, the output terminal function 091[OD4] is activated.

Code/Name	Range (unit)	Initial   value
AJ-58 Turn-off level for the PID4   feedback compare signal	0.00 to $100.00(\%)$	100.00
AJ-59 Turn-on level for the PID4   feedback compare signal	0.00 to 100.00(\%)	0.00



- When the PID feedback cross over the [AJ-58] level, the output terminal 092[FBV4] is OFF. If the PID feedback crosses under the [AJ-59] level 092[FBY4] is.turned on.

Call 1(800)985-6929 for Sales
Chapter 4
hitachiacdrive.com
sales@hitachiacdrive.com
For parameter configuration
[bA101] to [bA116]
Parameter mode (b code)
Frequency limit

Code/Name	Range (unit)	Initial value
bA101 Upper frequency limit source selection, 1st-motor	00(Disable)/   01(Terminal[Ai1])/   02(Terminal[Ai2])/   03(Terminal[Ai3])/   04(Terminal[Ai4])/   05(Terminal[Ai5])/   06(Terminal[Ai6])/   07(Parameter Setting)/   08(RS485)/   09(Option-1)/   10(Option-2)/   11(Option-3)/   12(Pulse train   input(internal))/   13(Pulse train   input(option))	00
bA102 Upper   frequency limit, 1st-motor	0.00 to 590.00(Hz)	0.00
bA103 Lower   frequency limit, 1st-motor	0.00 to 590.00(Hz)	0.00

- The upper and lower limits of the frequency reference. are set by the above parameters.
Torque limit

Code/Name	Range (unit)	Initial   value
	00(Disable)/   01(Terminal[Ai1])/   02(Terminal[Ai2])/   03(Terminal[Ai3])/   bA110   Torque limit selection, 1st-   motor   05(Terminal[Ai4])/   06(Termin])/   07(Parameter Setting)/   08(RS485)/09(Option1)/   10(Option2)/11(Option3)	
bA111 Torque limiting   parameters mode   selection, 1st-motor	00(4 quadrants)/   01(Switch by [TRQ1]/   [TRQ2] terminals)	07
bA112 Torque limit 1   (Forward drive), 1st-motor	0.0 to 500.0(\%)	00
bA113 Torque limit 2   (Reverse regenerative),   1st-motor	0.0 to 500.0(\%)	$150.0(\%)$
bA114 Torque limit 3   (Reverse drive), 1st-motor	0.0 to 500.0(\%)	$150.0(\%)$
bA115 Torque limit 4   (Forward regenerative),   1st-motor	0.0 to 500.0(\%)	$150.0(\%)$
bA116 Torque limit   LADSTOP selection, 1st-   motor	00(Disable)/   01 (Enable)	$150.0(\%)$

-The torque limit function is effective for vector control.
(with sensor, sensorless, OHz range sensorless).
-If the input terminal 060[TL] torque limit enabled is not assigned, [bA110] is always enabled.
When input terminal 060 [TL] is assigned and turned on, the torque limit function [bA110] becomes valid. When it is off, the torque limit value becomes the maximum value in the data setting range.

- When the torque is limited, the output terminal 022[TRQ] torque limiting signal is ON.

Overcurrent suppression function setting

Code/Name	Range (unit)	Initial   value
bA120   suppression enable, 1st-motor	00 (Disable)/   01 (Enable)	00
bA121 Overcurrent   suppression level, 1st-motor	Inverter rated   Current   $\times(0.0$ to 2.0$)(A)$	Inverter   rated   current $\times 1.8$

- Overcurrent can be suppressed, but in that case there is a possibility the motor become in a step-out state. Disable Overcurrent suppression in case an inverter is used in crane.
Overload restriction function setting

Code/Name	Range (unit)	Initial value
bA122   Overload restriction 1 mode selection, 1st-motor	00(Disable)/   01(Enable during accel. and constant speed)/   02(Constant speed only)/   03(Enable during accel.   and constant speed   (accel. during   regeneration))	01
bA123   Overload restriction 1 active level, 1st-motor	Inverter rated current $\times(0.2 \text { to } 2.0)(\mathrm{A})$	Inv rated current $\times 1.5(\mathrm{~A})$
bA124 Overload restriction   1 action time, 1st-motor	0.10 to 3600.00(s)	1.00
bA126   Overload restriction 2 mode selection, 1st-motor	00(Disable)/   01(Enable during accel.   and constant speed)/   02(Constant speed only)/   03(Enable during accel.   and constant speed   (accel. during   regeneration))	01
bA127   Overload restriction 2 active level, 1st-motor	Inverter rated current $\times(0.2 \text { to } 2.0)(\mathrm{A})$	Inv   rated current $\times 1.5(\mathrm{~A})$
bA128 Overload restriction 2 action time, 1st-motor	0.10 to 3600.00(s)	1.00

- When the current is increased over "Overload restriction level", the overload restriction function reduces the current automatically by lowering the frequency.

- Using input terminal $038[\mathrm{OLR}]$ state, the overload restriction 1(OFF) and overload restriction 2(ON) can be used.
[bA-30] to [bA145]
Deceleration / stop at power loss (Non-stop)

Code/Name	Range (unit)	Initial value
bA-30 Instantaneous power failure non-stop function, mode selection	00(Disable)/   01(Deceleration-stop)/   02 (Voltage controlled decel-stop(without recovery)) /   03 (Voltage controlled decel-stop (with recovery)	00
bA-31 Instantaneous power failure non-stop function, start voltage level	$\begin{aligned} & \hline \text { (200V class) } \\ & 0.0 \text { to } 410.0(\mathrm{Vdc}) \\ & \text { (400V class) } \\ & 0.0 \text { to } 820.0(\mathrm{Vdc}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { (200V class) } \\ 220.0 \\ (400 \mathrm{~V} \text { class) } \\ 440.0 \end{gathered}$
bA-32 Instantaneous power failure non-stop function, target voltage level	$\begin{aligned} & \hline \text { (200V class) } \\ & 0.0 \text { to } 410.0(\mathrm{Vdc}) \\ & (400 \mathrm{~V} \text { class) } \\ & 0.0 \text { to } 820.0(\mathrm{Vdc}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { (200V class) } \\ 360.0 \\ (400 \mathrm{~V} \text { class) } \\ 720.0 \end{gathered}$
bA-34 Instantaneous power failure non-stop function, deceleration time	0.01 to 3600.00(s)	1.00
bA-36 Instantaneous power failure non-stop function, start frequency decrement	0.00 to 10.00 (Hz)	0.00
bA-37 Instantaneous power failure non-stop function, DC bus voltage control $P$ gain	0.00 to 5.00	0.20
bA-38 Instantaneous power failure non-stop function, DC bus voltage control I gain	0.00 to 150.00(s)	1.00

- If the DC bus voltage of the main circuit is lower than the level of [bA31], the inverter decelerates to create a regenerative state.
- When [bA-30]=01, if the DC bus voltage drops under [bA-31], the current output frequency will be decreased by the amount set in the [bA-36] and then the inverter will decelerate according to the deceleration time [bA-34]. Once the DC bus voltage exceeds the [bA32], the deceleration is temporally stopped.
- When $[b A-30]=02 / 03$, at the time of DC bus voltage drop, PI control is performed to generate a regenerative state by deceleration and keep the $D C$ bus voltage at the [bA-32] set value.
- During Instantaneous power failure non-stop deceleration, output terminal 023[IPS] turns ON.


## Overvoltage suppression - deceleration

Code/Name	Range (unit)	Initial value
$\begin{array}{l}\text { bA140 Overvoltage } \\ \text { suppression enable } \\ \text { setting, 1st-motor }\end{array}$	$\begin{array}{l}\text { 00(Disable)/ } \\ \text { 01(Constant DC bus voltage } \\ \text { control(deceleration stop)) }\end{array}$	$\begin{array}{l}\text { 02(Enable acceleration)/ } \\ \text { 03(Enable acceleration (at } \\ \text { constant speed and } \\ \text { deceleration)) }\end{array}$

- When [bA140] = 01, the inverter stops with the deceleration time extended so that the DC bus voltage do not cross over the [bA141] level.
- When [bA140] $=02,03$, the inverter accelerates once so that the DC bus voltage do not cross over [bA141] level.

Code/Name	Range (unit)	Initial value
bA-60   Dynamic brake use ratio	0.0 to $10.0(\%){ }^{* 1)}$	10.0
bA-61   Dynamic brake activation   selection	00(Disable)/   01(Only while running)   02(Enable during stop)	00
bA-62 Dynamic brake   activation level	(200V class)   330.0 to 400.0(V)   (400V class)   660.0 to 800.0(V)	(200V class)   360.0   (400V class)   720.0
bA-63 Dynamic brake   resistor value	Inverter minimum   resistor value to   $600(\Omega)$	Minimum   resistance

*1) The actual dynamic brake use ratio is
[bA-60] $\times([b A-63] /(\text { Inverter minimum resistor }))^{\wedge} 2$.

- This function operates the braking resistor of the built-in braking circuits models. To use the BRD, setting [bA-60] and [bA-61] is required.
- Refer to the specification table of Chapter 7 for the minimum resistance value that can be connected.
Overvoltage suppression - Over-excitation

Code/Name	Range (unit)	Initial   value
bA146   Over-magnetization   function selection,   1st-motor	00(Disable)/   01(Always enable)/   02(At deceleration only)/   03(Operation at setting level)/   04(Operation at setting level at   deceleration only)	02
bA147   Over-magnetization   function output   filter time constant,   1st-motor	0.00 to 1.00(s)	0.30
bA148   Over-magnetization   function voltage   gain, 1st-motor	50 to 400(\%)	100
bA149   Over-magnetization   function   setting,   1st-motor	(200V Class)   330.0 to 400.0(Vdc)   (400V Class)   660.0 to 800.0(Vdc)	360   (400V Class)   720

- This function disables the AVR(Automatic output Voltage Regulation) function, works while in over-excitation.
- When [AA121]=00 to 02, 04 to $06,(\mathrm{~V} / \mathrm{f})$ is enabled.
- When [bA146]=03/04, it will be operative if DC bus voltage exceeds [bA-149] level.


## Dynamic braking (BRD) function

## Cooling-fan operation

Code/Name	Range (unit)	Initial   value
bA-70 Cooling fan   control method   selection	00(Always ON)/   01(While inverter operates)/   02(Depends on temperature)	00
bA-71 Clear   accumulated cooling fan   run time monitor	00(Disable)/01(Clear)	00

- The Inverter cooling fan can be stopped.
- If you change the cooling-fan, assigning [bA-71]=01 you will be able to clear the accumulated operation time.

2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range (unit)	Initial value
bA201 Upper frequency limit source selection, 2nd-motor	Same as bA101	
bA202 Upper Frequency limit, 2nd-motor	Same as bA102	
bA203 Lower Frequency limit, 2nd-motor	Same as bA103	
bA210 Torque limit selection, 2nd-motor	Same as bA110	
bA211 Torque limiting parameters mode selection, 2nd-motor	Same as bA111	
bA212 Torque limit 1 (Forward drive), 2nd-motor	Same as bA112	
bA213 Torque limit 2 (Reverse regenerative), 2ndmotor	Same as bA113	
bA214 Torque limit 3 (Reverse drive), 2nd-motor	Same as bA114	
bA215 Torque limit 4 (Forward regenerative), 2nd motor	Same as bA115	
bA216 Torque limit LADSTOP selection, 2nd-motor	Same as bA116	
bA220 Overcurrent suppression enable, 2ndmotor	Same as bA120	
bA221 Overcurrent suppression level, 2nd-motor	Same as bA121	
bA222 Overload restriction 1 mode selection, 2nd motor	Same as bA122	
bA223 Overload restriction 1 active level, 2ndmotor	Same as bA123	
bA224 Overload restriction 1 action time, 2ndmotor	Same as bA124	
bA226 Overload restriction 2 mode selection, 2nd motor	Same as bA126	
bA227 Overload restriction 2 active level, 2ndmotor	Same as bA127	
bA228 Overload restriction 2 action time, 2ndmotor	Same as bA128	
bA240 Overvoltage suppression enable, 2ndmotor	Same as bA140	
bA241 Overvoltage suppression active level, 2ndmotor	Same as bA141	
bA242 Overvoltage suppression active time, 2ndmotor	Same as bA142	
bA244 Constant DC bus voltage control P gain, 2nd-motor	Same as bA144	
bA245 Constant DC bus voltage control I gain, 2nd-motor	Same as bA145	
bA246 Over magnetization function selection, 2nd_motor	Same as bA146	
bA247 Over magnetization function output filter time constant, 2nd-motor	Same as bA147	
bA248 Over magnetization function voltage gain, 2nd-motor	Same as bA148	
bA249 Over magnetization function level setting, 2nd-motor	Same as bA149	

Reduction of electromagnetic sound

Code/Name	Range (unit)	Initial value
bb101 Carrier   frequency setting, 1stmotor	- 200V P1-004L to P1-550L 400V P1-007H to P1-550H [Ub-03]=   02(ND): 0.5 to $16.0(\mathrm{kHz})$   01(LD): 0.5 to $12.0(\mathrm{kHz})$   00(VLD): 0.5 to $10.0(\mathrm{kHz})$   - 400V P1-750H to P1-2200H [Ub-03]= 02(ND): 0.5 to $10.0(\mathrm{kHz})$ 01(LD): 0.5 to $8.0(\mathrm{kHz})$ 00(VLD): 0.5 to $8.0(\mathrm{kHz})$	2.0
bb102 sprinkle   carrier pattern selection, 1st-motor	```00(Disable)/ 01(Enable: Patern-1)/ 02(Enable: Patern-2)/ 03(Enable: Patern-3)```	00
bb103 Automatic   carrier reduction selection, 1st-motor	```00(Disable)/ 01(Enable: Current)/ 02(Enable: Temperature)```	00

- To decrease highfrequency electromagnetic noise, [bb101] should be set small. To lower motor sound loudness, [bb101] has to be set bigger.
- The carrier frequency may be internally limited depending on the setting of Load type selection [Ub-03].
- For the sake of the inverter protection, the Automatic carrier reduction [bb103] decreases the carrier in certain cases.

Reset operation after error event

Code/Name	Range (unit)	Initial   value
bb-10 Automatic   error reset selection	00(Disable)/   01(If RUN command is OFF)   02(After set time)	00
bb-11 Alarm signal   selection at automatic   error reset	00(Enable)/   01(Disable)	00
bb-12 Automatic   error reset wait time	0 to 600(s)	2
bb-13 Automatic   error reset number	0 to 10(count)	3

- Adjustment of the automatic reset that follows an error event. In the case that RUN command was on execution, after resetting, the motor re-operates according to the setting of [bb-41] Restart mode after RS release.


## Retry/trip setting in error event

Code/Name	Range (unit)	Initial   value
bb-20 Number of retries after   instantaneous power failure	0 to $16 / 255$	0
bb-21 Number of retries after   under voltage	0 to 16/255	0
bb-22 Number of retries after   overcurrent	0 to 5	0
bb-23 Number of retries after over   voltage	0 to 5	0

- Set the number of times to retry after each error.
- If 0 is set, as soon as an error occurs, it will trip.
- To retry, set the value of these parameters other than 0

Call 1(800)985-6929 for Sales Chapter 4
[bb-24] to [bb-42]

## Restart mode after instantaneous power failure/under-voltage error

Code/Name	Range (unit)	Initial   value
bb-24 Restart mode selection after   instantaneous power failure/under-voltage   error	${ }^{* 2)}$	01
bb-25 Instantaneous power failure   allowed time	0.3 to 25.0(s)	1.0
bb-26 Retry wait time after   instantaneous power failure/under-voltage   error	0.3 to   $100.0(\mathrm{~s})$	0.3
bb-27 Enable instantaneous power   failure/ under-voltage trip while in stop   status	00 (Disable)/   $01($ Enable)/   02 (Disable at   stop/Decel. stop)	00
bb-28 Restart mode selection after an   overcurrent error	$* 2)$   bb-29 Retry wait time after an   overcurrent error	0.3 to   $100.0(s)$
bb-30 Restart mode selection after an   overvoltage error	*2)	0.3
bb-31 Retry wait time after an   overvoltage error	0.3 to   100.0(s)	0.3

*2) 00(Restart at 0Hz)/01(Restart with matching frequency)/02(Restart with active frequency matching)/03(Detect speed)/04(Decelerate and stop with matching frequency and then trip)

- Regarding the restart, after the waiting time is completed the selected restart method is carried out.
Restart mode after FRS/RS

Code/Name	Range (unit)	Initial value
bb-40   Restart mode after FRS release	00(Restart at 0Hz)/   01(Restart with matching frequency)/   02(Restart with active frequency matching)/   03(Detect speed) *3)	00
bb-41   Restart mode after RS release		00

*3) Requires encoder feedback to the P1-FB option or the input terminal $103[P L A] / 104[P L B]$ assigned $[A] /[B]$ terminals.

- When using input terminal 032[FRS] and 028[RS], restart mode can be selected.
- By [bb-40], input terminal 032 [FRS] Free run ON and restart operation after free run at stop are selected.
- By [bb-41], select the operation after input terminal 028[RS] reset ON, the operation after reset by power off, and the restart operation after reset release at trip.
- When the input terminal 035[CS] commercial power supply change is turned ON, the inverter will be in free running state, and restart with matching frequency will be performed after [bb-26] time has elapsed. For more information, refer to the P1 user's guide.


## Minimum level of frequency matching

Code/Name	Range (unit)	Initial value
bb-42 Frequency matching   minimum restart frequency	0.00 to $590.00(\mathrm{~Hz})$	0.00

- The matching frequency function adopts the motor frequency for a shockless start-up.
- If at the restart the frequency is under the [bb-42] frequency, a 0 Hz restart will be used instead.


Call 1(800)985-6929 for Sales
Overcurrent level

Code/Name	Range (unit)	Initial value
bb160 Overcurrent   detection level, 1st-motor	Inverter rated ND   current $\times(0.2$ to 2.2) (A)	Inverter ND   rated current   $\times 2.2(\mathrm{~A})$

- The motor protection level for overcurrent can be set.
- In the case of a permanent magnet motor, set this parameter lower than the motor demagnetizing level.


## Overvoltage warning

Code/Name	Range (unit)	Initial value
bb-61 Power supply overvoltage selection	00(Warning)/   01(Error)	00
bb-62 Power supply overvoltage level setting	$\begin{aligned} & \hline(200 \mathrm{~V} \text { Class) } \\ & 300.0 \text { to } 410.0(\mathrm{~V}) \\ & \text { (400V Class) } \\ & 600.0 \text { to } 820.0(\mathrm{~V}) \end{aligned}$	$\begin{gathered} \hline \text { (200V Class) } \\ 390.0 \\ \text { (400V Class) } \\ 780.0 \end{gathered}$

- When the input suffers an overvoltage and if the DC bus voltage is higher than the value in [bb-62], a warning is issued in accordance with [bb-61].
- If [bb-61] is 01, the output terminal 081 [OVS]"Overvoltage power Supply" signal turns on and trips with [E015] error. if [bb-61] is 00, only the output terminal 081[OVS] signal is ON.


## Selection of Ground fault detection

Code/Name	Range (unit)	Initial value
bb-64 Detect ground fault   selection	00 (Disable)/   01 (Enable)	01

- Ground fault detection enable/disable is selectable.

Call 1(800)985-6929 for Sales
Chapter 4
[bb-65] to [bb260]
Phase loss detection

Code/Name	Range (unit)	Initial value
bb-65 Input phase loss   detection enable	00 (Disable)/01(Enable)	00
bb-66 Output phase loss   detection enable	00 (Disable)/01(Enable)	00
bb-67 Output phase loss   detection sensitivity	1 to 100(\%)	10

- Above function detects the disconnection of the supply RST input line and UVW output line.


## Thermistor error detection

Code/Name	Range (unit)	Initial   value
bb-70 Thermistor error level	0 to 10000( $\Omega$ )	3000
Cb-40 Thermistor type selection	00(Disable)/   $01($ PTC)/02(NTC)	00

- In [TH] terminal must be attached the kind of thermistor specified in [Cb-40]. If [Cb-40]=01 or 02, error level must be set in [bb-70].
Over-speed detectionl

Code/Name	Range (unit)	Initial value
bb-80 Over-speed detection level	0.0 to   $150.0(\%)$	135.0
bb-81 Over-speed detection time	0.0 to $5.0(\mathrm{~s})$	0.5

- In vector control, when speed surpass "maximum speed" $\times[\mathrm{bb}-$ 80] for more than the [bb-81] time, it will result in an error.
Abnormal deviation in speed control

Code/Name	Range (unit)	Initial value
bb-82 Speed deviation error   mode selection	00(Warning)/   01 (Error)	00
bb-83 Speed deviation error   detection level	0.0 to 100.0(\%)	15.0
bb-84 Speed deviation error   detection time	0.0 to 5.0(s)	0.5

- In vector control, if the time which the speed deviation (absolute of [dA-12]-[dA-08] ) is greater than the "maximum frequency setting" $x$ [bb-83] exceeds [bb-84] value , an error or warning will occur and the output terminal 041[DSE] turn ON.
Abnormal deviation in position control

Code/Name	Range (unit)	Initial value
bb-85 Position deviation error   mode selection	$00($ Warning)/   01 (Error)	00
bb-86 Position deviation error   detection level	0 to 65535   $(\times 100 p u l s e)$	4096
bb-87 Position deviation error   detection time	0.0 to 5.0(s)	0.5

- In position control, an error will occur if the time which position deviation is greater than [bb-86] exceeds [bb-87].
- When the input terminal $072[P C L R]$ is turned $O N$, the position deviation is cleared.
2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range (unit)	Initial value
bb201 Carrier frequency setting,   2nd-motor	Same as bb101	
bb202 Sprinkle carrier pattern   selection, 2nd-motor	Same as bb102	
bb203 Automatic carrier reduction   selection, 2nd-motor	Same as bb103	
bb260 Overcurrent detection level,   2nd-motor	Same as bb160	

## Electronic thermal protection

Code/Name	Range (unit)	Initial value
bC110 Electronic thermal level setting, 1st-motor	Inverter rated current $\times$ $(0.0 \text { to } 3.0)(\mathrm{A})$	Inverter rated current   $\times 1.0(\mathrm{~A})$
bC111   Electronic thermal characteristic selection, 1stmotor	00(Reduced torque (VT))/   01(Constant torque (CT))/   02(Free setting)	$\begin{gathered} 00(J P N) / \\ 01(E U)(U S A) \\ \text { (ASIA)(CHN) } \end{gathered}$
bC112   Electronic thermal decrease function enable, 1st-motor	00(Disable)/   01(Enable)	01
bC113 Electronic thermal decreasing time, 1st-motor	1 to 1000(s)	600
bC-14   Store electronic thermal counter at power-off	00(Disable)/   01(Enable)	01
bC120   Free electronic thermal frequency-1, 1st-motor	$\begin{aligned} & 0.00 \\ & \text { to bC122(Hz) } \end{aligned}$	0.00
bC121   Free electronic thermal current-1, 1st-motor	Inverter rated current $\times$ (0.0 to 3.0)(A)	0.0
bC122   Free electronic thermal frequency-2, 1st-motor	$\begin{aligned} & \text { bC120 } \\ & \text { to bC124(Hz) } \end{aligned}$	0.00
bC123   Free electronic thermal current-2, 1st-motor	Inverter rated current $\times$ $\times(0.0 \text { to } 3.0)(\mathrm{A})$	0.0
bC124   Free electronic thermal frequency-3, 1st-motor	$\begin{aligned} & \text { bC122 } \\ & \text { to } 590.00(\mathrm{~Hz}) \end{aligned}$	0.00
bC125   Free electronic thermal current-3, 1st-motor	Inverter rated current $\times$ $\times(0.0$ to 3.0$)(\mathrm{A})$	0.0

- The setting of [bC112] enables subtraction of the motor's thermal integration value. If [bC113] is lowered from the initial value, the risk of motor burnout may increase, so set it appropriately according to the heat dissipation characteristics of the motor. The inverter protection thermal (user setting not possible) operates separately.
(Example) When [bC111]=00, Inverter rated current:64A, [bC110]=64(A), Base frequency $[\mathrm{Hb104}]=60 \mathrm{~Hz}$, Output frequency $=20 \mathrm{~Hz}$
Reduction scale

- In case of output frequency $=16 \mathrm{~Hz}$ (base $=50 \mathrm{~Hz}$ ) or 20 Hz (base $=60 \mathrm{hz}$ ), the reduction scale is $\times 0.8$, then the inverter will trip when the output current of $120 \%(150 \% \times 0.8)$ flows continuously within 60 s according to the curve.


## [bC210] to [bC225]

(Example) When [bC111]=01, Inverter rated current:64A, [bC110]=64(A),
Base frequency $[\mathrm{Hb} 103]=60 \mathrm{~Hz}$, Output frequency $=2.5 \mathrm{~Hz}$


Trip time(s)


- In case of output frequency $=2.5 \mathrm{~Hz}$, the reduction scale is $\times 0.9$, then, the inverter will trip when the output current of $135 \%(=150 \% \times 0.9)$ flows continuously within 60 s according to the curve.
(Example) When $[\mathrm{bC111}]=02$, and Output frequency $=[\mathrm{bC122}]$


(x):[bC123]×109\%
(y):[bC123]×150\%
(z):[bC123]×200\%

2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range   (unit)	Initial   value
bC210 Electronic thermal level setting, 2nd-   motor	Same as bC110	
bC211 Electronic thermal characteristic   selection, 2nd-motor	Same as bC111	
bC212 Electronic thermal decrease function   selection, 2nd-motor	Same as bC112	
bC213 Electronic thermal decreasing time,   2nd-motor	Same as bC113	
bC220 Free electronic thermal frequency-1,   2nd-motor	Same as bC120	
bC221 Free electronic thermal current-1,   2nd-motor	Same as bC121	
bC222 Free electronic thermal frequency-2,   2nd-motor	Same as bC122	
bC223 Free electronic thermal current-2,   2nd-motor	Same as bC123	
bC224 Free electronic thermal frequency-3,   2nd-motor	Same as bC124	
bC225 Free electronic thermal current-3,   2nd-motor	Same as bC125	

[bd-01] to [bd-04]
functional Safety terminal (STO)

Code/Name	Range (unit)	Initial   value
bd-01 sTO input display   selection	00(Warning(display))/   01(Warning(without display))/   02(Trip)	00
bd-02 sTO input change   time	0.00 to 60.00(s)	1.00
bd-03 Display selection   during STO input change   time	00(Warning(display))/   01(Warning(without display))	00
bd-04 Action selection   after STO input change   time	00(Maintain current status)/   01(Disable)/   02(Trip)	00

- These are the display setting when the ST1 and ST2 terminals are used.
If functional safety certification is required, refer to the SJ-P1 Safety Function Guide (NT2512*X)
[CA-01] to [CA-31]
- Parameter mode (C code)

Intelligent input terminals setting
$\left.\begin{array}{|l|l|c|c|}\hline \text { Code/Name } & \text { Range (unit) } & \begin{array}{c}\text { Initial } \\ \text { value }\end{array} \\ \hline & & & \\ \hline \text { CA-01 Input terminal [1] function } & \text { Reference } \\ \text { <Input }\end{array}\right)$

- The functions for the input terminals 1 to $9, A, B$ are assigned in [CA-01] to [CA-09],[CA-10],[CA-11].

Input terminal NO/NC setting

Code/Name	Range (unit)	Initial value
CA-21 Input terminal [1] active state	00(Normally Open: NO)/ 01(Normally Closed: NC)	00
CA-22 Input terminal [2] active state		00
CA-23 Input terminal [3] active state		00
CA-24 Input terminal [4] active state		00
CA-25 Input terminal [5] active state		00
CA-26 Input terminal [6] active state		00
CA-27 Input terminal [7] active state		00
CA-28 Input terminal [8] active state		00
CA-29 Input terminal [9] active state		00
CA-30 input terminal [A] active state		00
CA-31 Input terminal [B] active state		00

- NO/NC for the Intelligent input terminals 1 to 9,A,B are assigned in [CA-21] to [CA-29],[CA-30],[CA-31].
- However, in the case of [RS] assignment the NO/NC will not apply, only NO will apply.
[CA-41] to [CA-55]


## Input terminal chatter prevention

Code/Name	Range (unit)	Initial value
CA-41 Input terminal [1] response time	0 to 400(ms)	2
CA-42 Input terminal [2] response time		2
CA-43 input terminal [3] response time		2
CA-44 Input terminal [4] response time		2
CA-45 Input terminal [5] response time		2
CA-46 Input terminal [6] response time		2
CA-47 Input terminal [7] response time		2
CA-48 Input terminal [8] response time		2
CA-49 Input terminal [9] response time		2
CA-50 input terminal [A] response time		2
CA-51 Input terminal [B] response time		2

- Above parameters set the time to wait after the input change has ended, and for the input to become stable and responsive.

Time allowed in simultaneous terminal change

Code/Name	Range (unit)	Initial   value
CA-55 Multistage input   determination time	0 to $2000(\mathrm{~ms})$	0

- Sets the dead time for multistage speed and position terminals change.
[Input terminal function list]

Function code	Symbol	Function name	Description
000	No	Not use	-
001	FW	Forward rotation	Activating (ON) only one of them will grant forward or reverse rotation command. $\Rightarrow$ [AA111]
002	RV	Reverse rotation	
003	CF1	Multi-speed selection 1	Changing the states of these terminals, allow to set different motor speeds and change among them.$\begin{aligned} \Rightarrow & {[\mathrm{Ab} 110] \text { to }[\mathrm{Ab}-25], } \\ & {[\mathrm{Ab} 210] } \end{aligned}$
004	CF2	Multi-speed selection 2	
005	CF3	Multi-speed selection 3	
006	CF4	Multi-speed selection 4	
007	SF1	Multi-speed Bit-1	
008	SF2	Multi-speed Bit-2	
009	SF3	Multi-speed Bit-3	
010	SF4	Multi-speed Bit-4	
011	SF5	Multi-speed Bit-5	
012	SF6	Multi-speed Bit-6	
013	SF7	Multi-speed Bit-7	
014	ADD	Trigger for frequency addition	When [ADD] is turned ON, the specified frequency value is added to the current frequency reference. $\rightarrow$ [AA106]
015	SCHG	Main/Sub speed reference change	Main speed(OFF)/Sub-speed (ON), to change between them use $\Rightarrow$ [AA105]
016	STA	3-wire start	[STA]'s ON starts the motor. [STP]'s OFF stops the motor. The inverter forwards operation direction if $[F / R]$ is (OFF), and reverses operation direction if it is (ON). $\Rightarrow$ [AA111]
017	STP	3-wire stop	
018	F/R	3-wire forward/reverse	
019	AHD	Analog command holding	When the main speed input source selection [AA101] is the analog input 01 to 06 , if AHD terminal is in ON state, holds the Analog terminal value. $\Rightarrow$ [AA101]
020	FUP	Remote control speed-UP   function	If the frequency can be set ([AHD] ON included),[FUP] ON accelerates, and [FDN] ON decelerates.   [UDC] returns to the saved value. $\Rightarrow$ [CA-60] to [CA-66]
021	FDN	Remote control speed-DOWN function	
022	UDC	Remote control   Speed data   clearing	
023	F-OP	Force operation	[F-OP]'s ON switches command. $\Rightarrow[C A-70],[C A-71]$
024	SET	2nd-motor control	Change between 1st-motor (OFF) and 2 nd-motor (ON).   $\Rightarrow$ By parameter
028	RS	Reset	Reset trip $\Rightarrow$ [bb-41], [CA-72]
029	JG	Jogging	Activates Jogging operation. $\Rightarrow[\mathrm{AG}-20],[\mathrm{AG}-21]$
030	DB	External dynamic brake	Enables the DC braking operation $\Rightarrow$ [AF101] to [AF109]
031	2 CH	2-stage   Accel/Decel time	[2CH]'s ON changes   the Accel/Decel time. $\Rightarrow$ [AC115]
032	FRS	Free run stop	[FRS]'s ON allows the motor to free run. $\Rightarrow$ [AA115],[bb-40]
033	EXT	External fault	[EXT]'s ON occurs error E012.
034	USP	Unattended start protection	When [USP] is ON, the RUN command is ON when the power supply is turned on to prevent the inverter from starting suddenly (Ex: Power supply is turned on with the [FW] ON ). In this case, E013 error occurs.
035	CS	Commercial power supply change	[CS] is used when switching to commercial power. When [CS] is turned ON, the inverter output is cut off.
036	SFT	Soft-Lock	[SFT]'s prevent parameters from being changed. $\Rightarrow U A$ [UA-16]

[Input terminal function list]

Function code	Symbol	Function name	Description
037	BOK	Answer back from Brake	The brake confirmation signal is inputted for the brake control.
038	OLR	Overload restriction selection	Switches between Overload limit 1(OFF) and 2(ON).   $\Rightarrow$ [bA122] to [bA128]
039	KHC	Accumulation input power clearance	[KHC]'s ON clears the Accumulated input power monitor. $\Rightarrow[U A-12]$
040	OKHC	Accumulation output power clearance	[OKHC]'s ON clears the Accumulated input power monitor. $\Rightarrow[$ UA-14]
041	PID	Disable PID1	If ON, disables PID1 and changes the PID target value for the frequency reference. $\Rightarrow[\mathrm{AH}-01]$
042	PIDC	PID1 integration reset	If ON, clears the integral value of the control. $\Rightarrow[A H-62],[A H-65]$
043	PID2	Disable PID2	If ON, disables PID2 and changes the PID target value for the frequency reference. $\Rightarrow[\mathrm{AJ}-01]$
044	PIDC2	PID2   integration reset	If ON, clears the integral value of the control. $\Rightarrow[\mathrm{AJ}-14]$
045	PID3	Disable PID3	If ON, disables PID3 and changes the PID target value for the frequency reference. $\Rightarrow[\mathrm{AJ}-21]$
046	PIDC3	PID3   integration reset	If ON , clears the integral value of the control. $\Rightarrow[A J-34]$
047	PID4	Disable PID4	If ON, disables PID4 and changes the PID target value for the frequency reference. $\Rightarrow[\mathrm{AJ}-41]$
048	PIDC4	PID4   integration   reset	If ON , clears the integral value of the control. $\Rightarrow[\mathrm{AJ}-54]$
051	SVC1	Multi set-point selection 1	
052	SVC2	Multi set-point selection 2	The target value can be selected by changing the pattern of ON/OFF
053	SVC3	Multi set-point selection 3	states. $\Rightarrow[\mathrm{AH}-06]$
054	SVC4	Multi set-point selection 4	
055	PRO	PID gain change	Switches between Gain 1(OFF) and Gain 2(ON).
056	PIO1	PID output switching 1	Switches PID Output 1 to 4 by (PIO1:PIO2).
057	PIO2	PID output switching 2	PID1 Enable(OFF:OFF)   PID2 Enable(OFF:ON)   PID3 Enable(ON:OFF)   PID4 Enable(ON:ON)
058	SLEP	SLEEP   condition activation	In case of [SLEP] terminal selected as sleep trigger, [SLEP]'s ON activates the sleep function. $\Rightarrow[\mathrm{AH}-85]$
059	WAKE	WAKE condition activation	In case of [WAKE] terminal selected as wake trigger, [WAKE]'s ON activates the wake function. $\Rightarrow[\mathrm{AH}-$ 93]
060	TL	Torque limit enable   *1)	[TL]'s ON enables torque limit.
061	TRQ1	Torque limit selection bit 1 *1)	The target value can be
062	TRQ2	Torque limit selection bit 2 *1)	pattern of ON/OFF states.

*1) These functions are disabled when the Control mode selection (AA121/AA221) setting is 00 to 06 ( $\mathrm{V} / \mathrm{f}$ control mode).
[Input terminal function list]

Function code	Symbol	Function name	Description
063	PPI	P/PI control mode selection	For drooping control, [PPI] switches between PI control (OFF) and P control (ON).
064	CAS	Control gain change	Changes between the PI gain 1 (OFF) and 2(ON) of the speed control system.
065	SON	Servo-on	[SON]'s ON executes the ServoLock operation.
066	FOC	Forcing (Pre-excitation)	Turning ON this terminal before operation, accelerates the torque rise by supplying an exciting current in advance.
067	ATR	Permission of torque control	[ATR]'s ON enables the torque control.
068	TBS	Torque bias enable	[TBS]'s ON enables the torque bias.
069	ORT	Home search function	[ORT]'s ON execute the home position return function in pulse train position control.
071	LAC	Acceleration/ Deceleration(LA   D) cancellation	[LAC]'s ON forces Accel/Decel time to 0.00s.
072	PCLR	Clearance of position deviation	Clears the position deviation of position control mode.
073	STAT	Pulse train position reference input enable	In the pulse train position control, if [STAT] is ON, the pulse train input is enabled.
074	PUP	Position bias (ADD)	In pulse train position control, when [PUP]/[PDN] is turned on,
075	PDN	Position bias (SUB)	"Position bias setting[AE-08]" is added/subtracted to/from the position reference.
076	CP1	Multistage position settings selection 1	
077	CP2	Multistage position settings selection 2	The position reference can be
078	CP3	Multistage position settings selection 3	selected by changing the pattern of ON/OFF states.
079	CP4	Multistage position settings selection 4	
080	ORL	Limit signal of homing   function	Used by the Zero-Return position
081	ORG	Start signal of homing function	control.
082	FOT	Forward over travel	When this signal is ON, the forward drive in absolute position control mode is limited (The torque limit value in the forward direction is set to $10 \%$ ).
083	ROT	Reverse over travel	When this signal is ON, reverse drive in absolute position control mode is limited (Torque limit value in reverse direction is set to $10 \%$ ).
084	SPD	Speed/Position switching	Switches position control (OFF) and speed control (ON).

*1) LAD :Lead to acceleration and deceleration

Function code	Symbol	Function name	Description
085	PSET	Position data presetting	[PSET]'s ON sets the actual position to the Pre-set position [AE-62].
086	MI1	Generalpurpose input 1	When these functions are assigned, they become general purpose input signals of the EzSQ function.
087	MI2	Generalpurpose input 2	
088	MI3	Generalpurpose input 3	
089	MI4	Generalpurpose input 4	
090	MI5	Generalpurpose input 5	
091	MI6	Generalpurpose input 6	
092	MI7	Generalpurpose input 7	
093	M18	Generalpurpose input 8	
094	M19	Generalpurpose input 9	
095	MI10	General-   purpose input $10$	
096	MI11	Generalpurpose input 11	
097	PCC	Pulse counter clearing	[PCC]'s ON clears the count for the pulse counter function.
098	ECOM	EzCOM activation	[ECOM]'s ON activates EzCOM.
099	PRG	Program RUN	[PRG]'s ON executes EzSQ.
100	HLD	Acceleration/ Deceleration disable	[HLD]'s ON stagnates Accel/Decel time temporally.
101	REN	RUN enable	Run command is not possible when the input terminal function [REN] is assigned and it is OFF.
102	DISP	Display lock	[DISP]'s ON locks the keypad screen.
103	PLA	Pulse count A	For pulse train input use.
104	PLB	Pulse count B	For pulse train input use.
105	EMF	Emergencyforce drive activation	Forces the set operation in emergency state.
107	COK	Contactor check signal	Regarding the braking control, check signal for the contactor.
108	DTR	Data trace start	[DTR]'s ON starts data trace function.
109	PLZ	Pulse train input Z	Z phase pulse input of the external encoder. It is invalid when using P1-FB.
110	TCH	Teach-in signal	[TCH]'s ON starts teach-in function.

Call 1(800)985-6929 for Sales Chapter 4
[CA-60] to [CA-84]

## [FUP] / [FDN] operations

Code/Name	Range (unit)	Initial value
CA-60 FUP/FDN overwrite target selection	00(Speed reference)   01(PID1 Set point)	00
CA-61 FUP/FDN data save enable	00(No save)/ 01(Save)	00
CA-62 FUP/FDN UDC selection	$\begin{aligned} & \hline 00(\mathrm{OHz}) / \\ & 01 \text { (Save data) } \end{aligned}$	00
CA-64 Acceleration time setting for FUP/FDN function	0.00 to 3600.00(s)	30.00
CA-66 Deceleration time setting for FUP/FDN function		30.00

- [CA-60] sets as operation target the frequency reference or the PID target value for 020[FUP]/021[FDN].
- [CA-61] sets whether the modified values of [FUP] / [FDN] should be saved or not in the inverter nonvolatile memory.
- [CA-62] selects the frequency reference when input terminal 022[UDC] is $O N$.
- If [FUP]/[FDN] is turn ON, in the case the frequency reference is changed you can set the acceleration and deceleration time [CA-64][CA66].


## [F-OP] Speed/Operation change

Code/Name	Range (unit)	Initial value
CA-70 speed   reference source selection when [FOP] is active	01(Terminal[Ai1])/02(Terminal[Ai2])/   03(Terminal[Ai3])/04(Terminal[Ai4])/   05(Terminal[Ai5])/06(Terminal[Ai1])/   07(Parameter Setting)/   08(RS485)/09(Option-1)/   10(Option-2)/11(Option-3)/   12(Pulse train input(internal))/   13(Pulse train input(option))/   14(Program function)/   15(PID calc.)/16(MOP VR)	01
CA-71 Run   command source selection when [FOP] is active	$\begin{aligned} & \text { 00([FW]/[RV] terminal)/ } \\ & 01(3 \text {-wire)/02(Keypad's RUN key)/ } \\ & \text { 03(RS485)/04(Option-1)/ } \\ & \text { 05(Option-2)/06(Option-3) } \end{aligned}$	00

- If input terminal 023[F-OP] is ON, the above settings are carried out.


## Reset terminal [RS]

Code/Name	Range (unit)	Initial   value
CA-72	O0(Always enabled (Trip release at turn-ON))/   O1(Always enabled (Trip release at turn-OFF))/   Reset mode   selection	O2(Only enable in trip status (Trip release at   turn-ON))/   O3(Only enable in trip status (Trip release at   turn-OFF))

- Normally, Output is shut off when reset terminal is ON.

It is also possible to enable only trip reset.
Main encoder input (For control terminal block [A]/[B])

Code/Name	Range (unit)	Initial value
CA-81   Encoder constant setting	32 to 65535(pulse)	1024
CA-82 Encoder phase   sequence selection	00(A Phase lead)/   01(B Phase lead)	00
CA-83 Motor gear ratio   numerator	1 to 10000	1
CA-84 Motor gear ratio   denominator	1 to 10000	1

[CA-90] to [CA-99]
Pulse train input terminal $[A][B]$

Code/Name	Range (unit)	Initial value
CA-90   Pulse train input, target function selection	00(Disable)/   01(Reference)/   02(Speed feedback)/   03(Pulse count)	00
CA-91   Pulse train input mode selection	00(90 degrees shift pulse train)/   01(Forward/Reverse pulse train and direction signal)/   02(Forward pulse train and reverse pulse train)	00
CA-92   Pulse train frequency scale	0.05 to 32.00 (kHz)	25.00
CA-93   Pulse train frequency filter time constant	0.01 to 2.00(s)	0.10
CA-94   Pulse train frequency bias value	-100.0 to 100.0(\%)	0.0
CA-95 Pulse train upper frequency detection level	0.0 to 100.0(\%)	100.0
CA-96 Pulse train lower frequency detection level	0.0 to 100.0(\%)	0.0

- When [CA-90] is other than 00, the input terminals $[A] /[B]$ become pulse train input terminals. Assign the input terminal function 103[PLA]/104[PLB] to terminals $[\mathrm{A}] /[\mathrm{B}]$ to perform pulse train input frequency reference, vector control with encoder feedback or absolute position control. The pulse train count method follows the setting of [CA-91].

Pulse train input counter

Code/Name	Range   (unit)	Initial   value
CA-97 Pulse counter compare match   output ON value	0 to 65535	0
CA-98 Pulse counter compare match   output OFF value	0 to 65535	0
CA-99   Pulse counter maximum value	0 to 65535	65535

- Set $044[\mathrm{PCMP}]$ to output the compare results of the pulse train counters of functions 103[PLA]/104[PLB].
- Turning 097[PCC] terminal in ON state resets the counter.

- Above parameters set the main encoder input and the motor gear ratio involved in the encoder feedback.

Call 1(800)985-6929 for Sales Chapter 4
hitachiacdrive.com
For parameter configuration
[Cb-01] to [Cb-35]
Analog input adjustment

Code/Name	Range (unit)	Initial value
Cb-01 [Ai1] Filter time constant	1 to 500(ms)	16
Cb-03 [Ai1] Start value	0.00 to 100.00(\%)	0.00
Cb-04 [Ai1] End value	0.00 to 100.00(\%)	100.00
Cb-05 [Ai1] Start rate	0.0 to [Cb-06](%25)	0.0
Cb-06 [Ai1] End rate	[Cb-05] to 100.0(\%)	100.0
$\mathbf{C b - 0 7}$ [Ai1] Start value selection	$\begin{aligned} & \text { 00(Start value)/ } \\ & \text { 01(0\%) } \end{aligned}$	01
Cb-11 [Ai2] Filter time constant	1 to 500(ms)	16
$\mathbf{C b - 1 3}$ [Ai2] Start value	0.00 to 100.00(\%)	0.00
Cb-14 [Ai2] End value	0.00 to 100.00(\%)	100.00
Cb-15 [Ai2] Start rate	0.0 to [Cb-16](%25)	20.0
$\mathbf{C b - 1 6}$ [Ai2] End rate	[Cb-15] to 100.0(\%)	100.0
$\mathbf{C b - 1 7}$ [Ai2] Start value selection	$\begin{aligned} & \text { 00(Start value)/ } \\ & \text { 01(0\%) } \end{aligned}$	01
Cb-21 [Ai3] Filter time constant	1 to 500(ms)	16
Cb-22 Terminal [Ai3]   selection	00(Single)/   01(Added to Ai1/Ai2:   forward and reverse)   02(Added to Ai1/Ai2:   Forward only)	00
Cb-23 [Ai3] Start value	$\begin{array}{\|l\|} \hline-100.00 \text { to } \\ 100.00(\%) \\ \hline \end{array}$	-100.00
$\mathbf{C b - 2 4}$ [Ai3] End value	$\begin{array}{\|l\|} \hline-100.00 \text { to } \\ 100.00(\%) \\ \hline \end{array}$	100.00
Cb-25 [Ai3] Start rate	-100.0 to [Cb-26]	-100.0
Cb-26 [Ai3] End rate	[Cb-25] to 100.0	100.0
Cb-30   [Ai1] Voltage/Current bias adjustment	-100.00 to 100.00(\%)	0.00
Cb-31   [Ai1] Voltage/Current gain adjustment	0.00 to 200.00(\%)	100.00
Cb-32   [Ai2] Voltage/Current bias adjustment	-100.00 to 100.00(\%)	0.00
Cb-33   [Ai2] Voltage/Current gain adjustment	0.00 to 200.00(\%)	100.00
Cb-34 [Ai3] Voltage bias adjustment	-100.00 to 100.00(\%)	0.00
Cb-35 [Ai3] Voltage gain adjustment	0.00 to 200.00(\%)	100.00

- Regarding the adjustment method of the Analog input,
refer to the "chapter 3.9 Adjust the analog input
(Ai1/Ai2)" and "chapter 3.11 Adjust the analog input (Ai3)".


## [Cb-40] to [Cb-57][CC-01] to [CC-17]

Thermistor error detection

Code/Name	Range (unit)	Initial   value
Cb-40 Thermistor type   selection	00(Disable)/   $01(\mathrm{PTC}) / 02(\mathrm{NTC})$	00
Cb-41   Thermistor gain adjustment	0.0 to 1000.0	100.0

- Set [Cb-40] according to the connected thermistor in TH input terminal.
- When [CA-40]=01 or 02, set [bb-70] the error level. Refer to [bb-70].
- In [Cb-41] thermistor gain adjustment, when the adjustment value is raised the resistance value is lowered.
MOP volume input adjustment

Code/Name	Range (unit)	Initial   value
Cb-51 MOP-VR input filter time   constant	1 to 500	100
Cb-53 MOP-VR start value	0.00 to 100.00(\%)	0.00
Cb-54 MOP-VR end value	0.00 to 100.00(\%)	100.00
Cb-55 MOP-VR start ratio	0.0 to [Cb-56](%25)	0.0
Cb-56 MOP-VR end ratio	[Cb-55] to 100.0(\%)	100.0
Cb-57 MOP-VR start selection	00(Start value)/   01(0\%)	01

- These are the parameters when using optional operation keypad (MOP).
Intelligent Output terminals setting

Code/Name	Range (unit)	Initial value
CC-01 Output terminal [11] function	Reference <Intelligent output terminal function list>	001(RUN)
CC-02 Output terminal [12] function		002(FA1)
CC-03 Output terminal [13] function		003(FA2)
CC-04 Output terminal [14] function		007(IRDY)
CC-05 Output terminal [15] function		035(OL)
CC-06 Output terminal [16] function		000(NO)*1)
CC-07 Output terminal [AL] function		017(AL)

*1) Ver2.01 and older, inirtial value is 040 [ZS].

- The functions for the output terminals 11 to $15,16 \mathrm{~A}, \mathrm{AL}$ are assigned in [CC-01] to [CC-05],[CC-06],[CC-07].
Output terminal NO/NC setting

Code/Name	$\begin{aligned} & \hline \text { Range } \\ & \text { (unit) } \end{aligned}$	Initial value
CC-11 Output terminal [11] active state	00(Normally open: NO)/ 01(Normally closed: NC)	00
CC-12 Output terminal [12] active state		00
CC-13 Output terminal [13] active state		00
CC-14 Output terminal [14] active state		00
CC-15 Output terminal [15] active state		00
CC-16 Output terminal [16] active state		00
CC-17 Output terminal [AL] active state		01

- The NO/NC setting for the Intelligent output terminals 11 to $15,16 \mathrm{~A}, \mathrm{AL}$ are assigned in [CC-11] to [CC-15], [CC16], [CC-17].
[CC-20] to [CC-33]


## Output terminals stabilization

Code/Name	Range (unit)	Initial value
CC-20 Output terminal [11] on-delay time	0.00 to 100.00(s)	0.00
CC-21 Output terminal [11] off-delay time	0.00 to 100.00(s)	0.00
CC-22 Output terminal [12] on-delay time	0.00 to 100.00(s)	0.00
CC-23 Output terminal [12] off-delay time	0.00 to 100.00(s)	0.00
CC-24 Output terminal [13] on-delay time	0.00 to 100.00(s)	0.00
CC-25 Output terminal [13] off-delay time	0.00 to 100.00(s)	0.00
CC-26 Output terminal [14] on-delay time	0.00 to 100.00(s)	0.00
CC-27 Output terminal [14] off-delay time	0.00 to 100.00(s)	0.00
CC-28 Output terminal [15] on-delay time	0.00 to 100.00(s)	0.00
CC-29 Output terminal [15] off-delay time	0.00 to 100.00(s)	0.00
CC-30 Output terminal [16] on-delay time	0.00 to 100.00(s)	0.00
CC-31 Output terminal [16] off-delay time	0.00 to 100.00(s)	0.00
CC-32 Output terminal [AL] on-delay time	0.00 to 100.00(s)	0.00
CC-33 Output terminal [AL] off-delay time	0.00 to 100.00(s)	0.00

- The above parameters set the delay time from the change of the output terminal to the actual response.
[output terminal function list]


Function code	Symbol	Function name	Description
000	No	Not use	-
001	RUN	Running	While output is active
002	FA1	Constant-frequency reached	Turn on when output frequency is reached frequency reference.
003	FA2	Set frequency overreached	Turns ON when the output frequency reaches or exceeds the specified arrival value. [CE-10][CE-11]
004	FA3	Set frequency reached	Turns ON only when the specified arrival frequency has been reached. [CE-12][CE-13]
005	FA4	Set frequency overreached 2	Turns ON when the specified arrival frequency is reached or exceeded. [CE-12][CE-13]
006	FA5	Set frequency reached 2	Turns ON only when the specified arrival frequency has been reached. [CE-12][CE-13]
007	IRDY	Inverter ready	ON when inverter is ready
008	FWR	Forward rotation	ON while in forward drive
009	RVR	Reverse rotation	ON while in reverse drive
010	FREF	Frequency reference $=$ Keypad is selected	ON if the frequency reference is from keypad
011	REF	Run command = Keypad is selected	ON if the RUN command is from keypad.
012	SETM	2nd control is selected	ON if 2nd-motor selected
016	OPO	Option output	Controlled by the Option
017	AL	Alarm	ON when trip happens
018	MJA	Major failure	ON if major failure trips
019	OTQ	Over-torque *1)	ON if torque exceeds the level [CE120] to [CE123].
020	IP	Instantaneous power failure	After the main power supply R,S,T is established,   it turns ON when an instantaneous power failure of the main power supply is detected.
021	UV	Under-voltage	Turns on when main power drops or control power fails.
022	TRQ	Torque limited	ON if torque limit operates
023	IPS	IP-Nonstop function is active	ON if IP-Nonstop function operates in power loss.
024	RNT	Accumulated operation time over	ON if set time [CE-36] is exceeded
025	ONT	Accumulated power-on time over	ON if set time [CE-36] is exceeded
026	THM	Electronic thermal alarm signal(MTR)	ON if motor thermal integral value exceeds set value [CE30]
027	THC	Electronic thermal alarm signal(CTL)	ON if inverter thermal integral value exceeds set value [CE-31]
029	WAC	Capacitor life warning	ON by life warning
030	WAF	Cooling-fan speed drop	ON by life warning
031	FR	Starting contact signal	ON while in operation
032	OHF	Heat sink overheat warning	ON when the heatsink temperature is over the setting value [CE-34].
033	LOC	Low-current indication signal	ON if output current is less than the setting value [CE102].

*1) This function is disabled when the Control mode selection
(AA121/AA221) setting is 00 to 06 (V/f control mode).

Call 1(800)985-6929 for Sales
Chapter 4
[Output terminal function list]

Function code	Symbol	Function name	Description
034	LOC2	Low-current indication signal 2	ON if output current is less than the setting value [CE103].
035	OL	Overload notice advance signal 1	ON if output current exceeds specified value [CE106]
036	OL2	Overload notice advance signal 2	ON if output current exceeds specified value [CE107]
037	BRK	Brake release	ON when brake releases
038	BER	Brake error	ON if abnormality in sequence happens.
039	CON	Contactor control	This signal is used for power line contactor control.
040	ZS	OHz speed detection	ON if output frequency is less than set value [CE-33]
041	DSE	Speed deviation over	ON if speed deviation exceeds the set value.[bb-82] [bb-83] [bb-84]
042	PDD	Position deviation over	ON if position deviation exceeds the set value.[bb-85] [bb-86] [bb-87]
043	POK	Positioning completed	ON if positioning is completed
044	PCMP	Pulse count compare match output	ON when set value and pulse train counter match.   [CA-97] to [CA-99]
045	OD	Deviation over for PID control	ON if PID control deviation exceeds the set value [AH-72]
046	FBV	PID1 feedback comparison	ON if PID feedback is within range. [AH-73] [AH-74]
047	OD2	OD: Deviation over for PID2 control	ON if PID control deviation exceeds the set value [AJ-17]
048	FBV2	PID2 feedback comparison	ON if PID feedback is within range. [AJ-18] [AJ-19]
049	NDc	Communication line disconnection	ON if communication is lost with operation keypad
050	Ai1Dc	Analog [Ai1] disconnection detection	ON if Analog input 1 is less than the set value [CE-50] [CE-51]
051	Ai2Dc	Analog [Ai2] disconnection detection	ON if Analog input 2 is less than the set value [CE-52] [CE-53]
052	Ai3Dc	Analog [Ai3] disconnection detection	ON if Analog input 3 is less than the set value [CE-54] [CE-55]
053	Ai4Dc	Analog [Ai4] disconnection detection	ON if Analog input 4 is less than the set value [oE-44] [oE-45]
054	Ai5Dc	Analog [Ai5] disconnection detection	ON if Analog input 5 is less than the set value [oE-46] [oE-47]
055	Ai6Dc	Analog [Ai6] disconnection detection	ON if Analog input 6 is less than the set value [oE-48] [oE-49]
056	WCAi1	Window comparator Ai1	ON if Analog input 1 is within range. [CE-40] to [CE-42]
057	WCAi2	Window comparator Ai2	ON if Analog input 2 is within range. [CE-43] to [CE-45]
058	WCAi3	Window comparator Ai3	ON if Analog input 3 is within range. [CE-46] to [CE-48]
059	WCAi4	Window comparator Ai4	ON if Analog input 4 is within range. [oE-35] to [oE-37]
060	WCAi5	Window comparator Ai5	ON if Analog input 5 is within range. [oE-38] to [oE-40]
061	WCAi6	Window comparator Ai6	ON if Analog input 6 is within range. [oE-41] to [oE-43]

[Output terminal function list]

Function code	Symbol	Function name	Description
062	LOG1	Logical operation result 1	Determined by the calculation results of two output terminals
063	LOG2	Logical operation result 2	
064	LOG3	Logical operation result 3	
065	LOG4	Logical operation result 4	
066	LOG5	Logical operation result 5	
067	LOG6	Logical operation result 6	
068	LOG7	Logical operation result 7	
069	MO1	General-purpose output 1	Set if case of use of EzSQ
070	MO2	General-purpose output 2	
071	MO3	General-purpose output 3	
072	MO4	General-purpose output 4	
073	MO5	General-purpose output 5	
074	MO6	General-purpose output 6	
075	MO7	General-purpose output 7	
076	EMFC	Emergency force drive indicator	ON while in force operation
077	EMBP	Bypass mode indicator	ON while in bypass operation
078	WFT	Trace function waiting for trigger	This signal turns on until the trace start triggers are input.
079	TRA	Trace function data logging	ON while in data sampling.
080	LBK	Low-battery of keypad	ON while in low battery or when keypad transfers no clock data.
081	OVS	Overvoltage power Supply	ON when overvoltage is detected in stop status.
084	ACO	Alarm code bit-0	Alarm information is output as bits by these signals.   Refer to the P1 User Guide for more details.
085	AC1	Alarm code bit-1	
086	AC2	Alarm code bit-2	
087	AC3	Alarm code bit-3	
089	OD3	Deviation over for PID3 control	ON when PID deviation exceeds the value [AJ-37]
090	FBV3	PID3 feedback comparison	ON when PID feedback is between [AJ-38]/[AJ-39]
091	OD4	Deviation over for PID4 control	ON when PID deviation exceeds the value [AJ-57]
092	FBV4	PID4 feedback comparison	ON when PID feedback is between [AJ-58]/[AJ-59]
093	SSE	PID soft start error	ON when PID soft start became in warning status

[CC-40] to [CC-60]

## Logic output terminals setting

Code/Name	Range (unit)	Initial value
CC-40 LOG1 operand-1   selection	<Intelligent output terminal function list> reference *1)	000
CC-41 LoG1 operand-2   selection	<Intelligent output terminal function list> reference *1)	000
CC-42 LOG1 logical calculation selection	$\begin{aligned} & \text { 00(AND)/01(OR)/ } \\ & \text { 02(XOR) } \end{aligned}$	00
CC-43 LOG2 operand-1   selection	<Intelligent output terminal function list> reference *1)	000
CC-44 LOG2 operand-2   selection	<Intelligent output terminal function list> reference *1)	000
CC-45 LOG2 logical calculation selection	$\begin{aligned} & \text { 00(AND)/01(OR)/ } \\ & \text { 02(XOR) } \end{aligned}$	00
CC-46 LOG3 operand-1   selection	<Intelligent output terminal function list> reference *1)	000
CC-47 LOG3 operand-2   selection	<Intelligent output terminal function list> reference *1)	000
CC-48 LOG3 logical calculation selection	$\begin{aligned} & \text { 00(AND)/01(OR)/ } \\ & \text { 02(XOR) } \end{aligned}$	00
CC-49 LOG4 operand-1   selection	<Intelligent output terminal function list> reference *1)	000
CC-50 LOG4 operand-2   selection	<Intelligent output terminal function list> reference *1)	000
CC-51 LOG4 logical calculation selection	$\begin{aligned} & \text { 00(AND)/01(OR)/ } \\ & \text { 02(XOR) } \end{aligned}$	00
CC-52 log5 operand-1   selection	<Intelligent output terminal function list> reference *1)	000
CC-53 LOG5 operand-2   selection	<Intelligent output terminal function list> reference ${ }^{*} 1$ )	000
CC-54 loG5 logical calculation selection	$\begin{aligned} & \text { 00(AND)/01(OR)/ } \\ & \text { 02(XOR) } \end{aligned}$	00
CC-55 LOG6 operand-1   selection	<Intelligent output terminal function list> reference *1)	000
CC-56 LOG6 operand-2   selection	< Intelligent output terminal function list> reference *1)	000
CC-57 LOG6 logical calculation selection	$\begin{aligned} & \text { 00(AND)/01(OR)/ } \\ & \text { 02(XOR) } \end{aligned}$	00
CC-58 LOG7 operand-1   selection	<Intelligent output terminal function list> reference *1)	000
CC-59 LOG7 operand-2 selection	<Intelligent output terminal function list> reference *1)	000
CC-60 LOG7 logical calculation selection	$\begin{aligned} & \text { 00(AND)/01(OR)/ } \\ & \text { 02(XOR) } \end{aligned}$	00

*1) 062[LOG1] to 068[LOG7] can not be selected.

- The logical operation function outputs the operation results of the two selected output functions to the output terminal functions [LOG1] to [LOG7].
[Cd-01] to [Cd-35]
Analog output terminal adjustment

Code/Name	Range (unit)	Initial value
Cd-01 [FM] Output wave form selection	00(PWM)/   01(Frequency)	00
Cd-02 [FM] Output base frequency (At digital frequency output)	0 to 3600(Hz)	2880
Cd-03 [FM] Output monitor selection		dA-01
Cd-04 [Ao1] Output monitor selection	Set monitor code	dA-01
Cd-05 [Ao2] Output monitor selection		dA-01
Cd-10 Analog monitor adjustment mode enable	00(Disable)/   01(Enable)	00
Cd-11 [FM] Output filter time constant	1 to 500(ms)	100
Cd-12 [FM] Data type selection	00(Absolute value)/   01(Signed value)	00
Cd-13 [FM] Bias adjustment	-100.0 to 100.0(\%)	0.0
Cd-14 [FM] Gain adjustment	$\begin{aligned} & \hline-1000.0 \text { to } \\ & 1000.0(\%) \end{aligned}$	100.0
Cd-15 Adjustment mode [FM] output level	-100.0 to 100.0(\%)	100.0
Cd-21 [Ao1] Output filter time constant	1 to 500(ms)	100
Cd-22 [Ao1] Data type selection	00(Absolute value)/   01(Signed value)	00
Cd-23 [Ao1] Bias adjustment	-100.0 to 100.0(\%)	0.0
Cd-24 [Ao1] Gain adjustment	$\begin{gathered} -1000.0 \text { to } \\ 1000.0(\%) \end{gathered}$	100.0
Cd-25 Adjustment mode [Ao1] output level	-100.0 to 100.0(\%)	100.0
Cd-31 [Ao2] Output filter time constant	1 to 500(ms)	100
Cd-32 [Ao2] Data type se lection	00(Absolute value)/   01(Signed value)	00
Cd-33 [Ao2] Bias adjustment	-100.0 to 100.0(\%)	20.0
Cd-34 [Ao2] Gain adjustment	$\begin{aligned} & \hline-1000.0 \text { to } \\ & 1000.0(\%) \\ & \hline \end{aligned}$	$\begin{gathered} 80.0 \\ * 1) \\ \hline \end{gathered}$
Cd-35 Adjustment mode [Ao2] output level	-100.0 to 100.0(\%)	100.0

*1) Ver2.01 and older, inirtial value is $100.0 \%$

- Regarding the adjustment method of the Analog output, refer to the "chapter 3.10 Adjust the analog output (Ao1/Ao2/FM)"

Call 1(800)985-6929 for Sales
Chapter 4
hitachiacdrive.com
For parameter configuration
[CE-10] to [CE-31]

## Frequency arrival signal setting

Code/Name	Range   (unit)	Initial   value
CE-10 Arrival frequency 1 value setting   during acceleration		0.00
CE-11 Arrival frequency 1 value setting   during deceleration		0.00
CE-12 Arrival frequency 2 value setting   during acceleration	$590.00(\mathrm{~Hz})$	0.00
CE-13 Arrival frequency 2 value setting   during deceleration		0.00

- Set the operation of the frequency arrival signal.
(Example) In 003[FA2]/005[FA4] case:

(Example) In 004[FA3]/006[FA5] case:


Over-torque signal

Code/Name	Range (unit)	Initial   value
CE120 Over-torque level (Forward   drive), 1st motor		100.0
CE121 Over-torque level (Reverse   regenerative), 1st motor	0.0 to 500.0(\%)	100.0
CE122 Over-torque level (Reverse   drive), 1st motor		100.0
CE123 Over-torque level (Forward   regenerative), 1st motor		100.0

- Set the level to output the 019[OTO] signal, when using vector control and the torque goes over the limit.


## Electronic thermal warning

Code/Name	$\begin{array}{c}\text { Range } \\ \text { (unit) }\end{array}$	$\begin{array}{c}\text { Initial } \\ \text { value }\end{array}$
$\begin{array}{l}\text { CE-30 Electronic thermal warning level } \\ \text { (MTR) }\end{array}$		80.00
$\begin{array}{l}\text { CE-31 Electronic thermal warning level } \\ \text { (CTL) }\end{array}$	$\begin{array}{c}0.00 \text { to }\end{array}$	80.00 (\%)

- [CE-30] sets the level to output the motor electronic thermal warning 026[THM].
- [CE-31] sets the level to output the inverter electronic thermal warning 027[THC].

Call 1(800)985-6929 for Sales
Chapter 4
sales@hitachiacdrive.com
For parameter configuration

## [CE-52] to [CE-55][CE201]to[CE223]

Code/Name	Range (unit)	Initial   value
CE-52 [Ai2] Operation set level   at disconnection or compare   event	0 to 100(\%)	0
CE-53 [Ai2] Operation set level   implement timing	00(Disable)/   01(Enable   (at WC*active)/   02(Enable   (at WC*de-active)	00
CE-54 [Ai3] Operation set level   at disconnection or compare   event	-100 to 100(\%)	0
CE-55 [Ai3] Operation set level   implement timing	00(Disable)/   01(Enable   (at WC*active)/   02(Enable   (at WC*de-active)	00

- Window comparator function output signals whenever the analog inputs value are within or out of range.
- In the case of disconnection judgment, the reference value can be set to the [CE-50]/[CE-52]/[CE-54] setting value when it is within or out of the range of the window comparator.
- Set the warning level in which the output terminal 024[RNT] accumulated operation time over and output terminal 025[ONT] accumulated power-on time over turn ON .

Window comparator (detection of terminal disconnection)

Code/Name	Range (unit)	Initial   value
CE-40 [Ai1] Window comparator   higher limit	0 to 100(\%)	100
CE-41 [Ai1] Window comparator   lower limit	0 to 100(\%)	0
CE-42 [Ai1] Window comparator   hysteresis width	0 to 10(\%)	0
CE-43 [Ai2] Window comparator   higher limit	0 to 100(\%)	100
CE-44 [Ai2] Window comparator   lower limit	0 to 100(\%)	0
CE-45 [Ai2] Window comparator   hysteresis width	0 to 10(\%)	0
CE-46 [Ai3] Window comparator   higher limit	-100 to 100(\%)	100
CE-47 [Ai3] Window comparator   lower limit	-100 to 100(\%)	-100
CE-48 [Ai3] Window comparator   hysteresis width	0 to 10(\%)	0
CE-50 [Ai1] Operation set level   at disconnection or compare event	0 to 100(\%)	0
CE-51 [Ai1] Operation set level	00(Disable)/   01(Enable(at   WC*active)/   02(Enable(at   WC*de-active)	00
implement timing		

If in case [CE-51] [CE-53] [CE-55] $=02$ :


- When using the P1-AG analog input/output option, Output terminal 053[Ai4Dc] to 055[Ai6Dc] and 059 [WCAi4] to 061[WCAi6] can be output in the same operation as the above figure by using parameters [oE-35] to [oE-49].

2nd motor When Intelligent Input terminal 024[SET] is enabled.		
Code/Name	Range (unit)	Initial   value
CE201 Low current signal output mode   selection, 2nd-motor	Same as CE101	
CE202 Low current detection level 1,   2nd-motor	Same as CE102	
CE203 Low current detection level 2,   2nd-motor	Same as CE103	
CE205 Overcurrent signal output mode   selection, 2nd-motor	Same as CE105	
CE206 Overcurrent detection level 1,   2nd-motor	Same as CE106	
CE207 Overcurrent detection level 2,   2nd-motor	Same as CE107	
CE220 Over-torque level (Forward   drive), 2nd-motor	Same as CE120	
CE221 Over-torque level (Reverse   regenerative), 2nd-motor	Same as CE121	
CE222 Over-torque level (Reverse   drive), 2nd-motor	Same as CE122	
CE223 Over-torque level (Forward   regenerative), 2nd motor	Same as CE123	

[CF-01] to [CF-11]
Modbus communication

Code/Name	Range (unit)	Initial value
CF-01   RS485 communication baud rate selection	03(2400bps)/ 04(4800bps)/ 05(9600bps)/ 06(19.2kbps)/ 07(38.4kbps)/ 08(57.6kbps)/ 09(76.8kbps)/ 10(115.2kbps)	05
CF-02 RS485   communication node address	1 to 247	1
CF-03 RS485   communication parity selection	00(No parity)/   01(Even parity)/   02(Odd parity)	00
CF-04 RS485   communication stop bit selection	01(1bit)/02(2bit)	01
CF-05 RS485   communication error selection	00(Error)/   01(Error output after Deceleration stop)/   02(Ignore)/   03(Free run stop)/   04(Deceleration stop)	02
CF-06   RS485 communication timeout setting	0.00 to 100.00(s)	0.00
CF-07 RS485   communication wait time setting	0 to 1000(ms)	2
CF-08 RS485   communication mode selection	$\begin{aligned} & \hline \text { 01(Modbus-RTU)/ } \\ & \text { 02(EzCOM)/ } \\ & \text { 03(EzCOM } \\ & \quad \text { Administrator) } \\ & \hline \end{aligned}$	01
CF-11 Register data conversion function ( $\mathrm{A}, \mathrm{V} \Leftrightarrow \%$ )	00(A, V)/ 01(\%)	00

- Set the Modbus communication function for its use.
- When using communication function between inverter EzCOM, set a value except 01 for [CF-08].
- When communication disconnection occurs, the output terminal 049[NDc] turns ON.
049[NDc] signal is turned off when the error is cleared. For more information, refer to the P1 User's guide.
[CF-20] to [CF-50]


## EzCOM peer to peer communication

Code/Name	Range (unit)	Initial value
CF-20 EzCOM start node No.	1 to 8	1
CF-21 EzCOM end node No.	1 to 8	1
CF-22 EzCOM start method selection	00(Terminal [ECOM])/ 01(Always)	00
CF-23 EzCOM data size	1 to 5	5
CF-24 EzCOM destination address 1	1 to 247	1
CF-25 EzCOM destination register 1	0000 to FFFF	0000
CF-26 EzCOM source register 1	0000 to FFFF	0000
CF-27 EzCOM destination address 2	1 to 247	2
CF-28 EzCOM destination register 2	0000 to FFFF	0000
CF-29 EzCOM source register 2	0000 to FFFF	0000
CF-30 EzCOM destination address 3	1 to 247	3
CF-31 EzCOM destination register 3	0000 to FFFF	0000
CF-32 EzCOM source register 3	0000 to FFFF	0000
CF-33 EzCOM destination address 4	1 to 247	4
CF-34 EzCOM destination register 4	0000 to FFFF	0000
CF-35 EzCOM source register 4	0000 to FFFF	0000
CF-36 EzCOM destination address 5	1 to 247	5
CF-37 EzCOM destination register 5	0000 to FFFF	0000
CF-38 EzCOM source register 5	0000 to FFFF	0000

- Set for the use of EzCOM function.

For more information, refer to the P1 User's guide.

## USB node setting

Code/Name	Range (unit)	Initial   value
CF-50 USB communication   node address	1 to 247	1

- Sets the USB node address in the case of connection with ProDriveNext(PC software). It is also required to confirm the USB node in the ProDriveNext side (The initial value of ProDriveNext is also node address 1).
- When connecting P1 and ProDriveNext at first time, keep the setting value 1 .

Call 1(800)985-6929 for Sales
Chapter 4
sales@hitachiacdrive.com
For parameter configuration
[HA-01] to [HA115]
Parameter mode (H code)
Auto-tuning

Code/Name	Range (unit)	Initial   value
HA-01		
Auto-tuning selection	00(Disable)/   01(No-rotation)/   02(Rotation)/   03(IVMS)	00
HA-02 Auto-tuning RUN		
command source selection	00(Keypad "RUN" key)/   01(Setting by   [AA111]/[AA211])	00
HA-03   Online auto-tuning selection	00(Disable)/   01(Enable)	00

- After setting the motor basic parameters, by the autotuning operation the constant of the motor will be able to acquired.
- For no-rotation auto-tuning, the following variables are acquired, IM:[Hb110] to [Hb114], SM(PMM):[Hd110] to [Hd114].
- For rotation auto-tuning, the following variables are acquired, $\mathrm{IM}:[\mathrm{Hb} 110]$ to [Hb118]. Keep the operation conditions, as the motor can rotate.
- Auto-tuning start is done by the RUN-key ([HA-02] Initial value)


## Motor stabilization (Hunting)

Code/Name	Range (unit)	Initial   value
HA110 Stabilization constant,   1st-motor	0 to 1000(\%)	100

- If hunting occurs while a pump or a fan is being operated, lower the stabilization constant for adjustment.
- In the case the load is relatively light and hunting occurs, then increase the stabilization constant.


## Control mode response adjustment

Code/Name	Range (unit)	Initial   value
HA115 Speed response, 1st-motor	0 to 1000(\%)	100

- The speed response in the operation control of the inverter will be adjusted.
$\Rightarrow$ [AA121] control mode
[HA12의 to [HA134]
Control response ASR gain switching

Code/Name	Range (unit)	Initial value
HA120 ASR gain switching mode selection, 1st-motor	00([CAS] terminal)/   01(Parameter setting)	00
HA121 ASR gain switching time setting, 1st-motor	Oto 10000(ms)	100
HA122 ASR gain mapping intermediate speed 1, 1st-motor	0.00 to $590.00(\mathrm{~Hz})$	0.00
HA123 ASR gain mapping intermediate speed 2, 1st-motor	0.00 to 590.00(Hz)	0.00
HA124 ASR gain mapping maximum speed, 1st-motor	0.00 to $590.00(\mathrm{~Hz})$	0.00
HA125 ASR gain mapping P-   gain 1, 1st-motor	0.0 to 1000.0(\%)	100.0
HA126 ASR gain mapping I-gain 1, 1st-motor	0.0 to 1000.0(\%)	100.0
HA127 ASR gain mapping P control P-gain 1, 1st-motor	0.0 to 1000.0(\%)	100.0
HA128 ASR gain mapping Pgain 2, 1st-motor	0.0 to 1000.0(\%)	100.0
HA129 ASR gain mapping   I-gain 2, 1st-motor	0.0 to 1000.0(\%)	100.0
HA130 ASR gain mapping P control P-gain 2, 1st-motor	0.0 to 1000.0(\%)	100.0
HA131 ASR gain mapping P-   gain 3, 1st-motor	0.0 to 1000.0(\%)	100.0
HA132 ASR gain mapping   I-gain 3, 1st-motor	0.0 to 1000.0(\%)	100.0
HA133 ASR gain mapping $P$ -   gain 4, 1st-motor	0.0 to 1000.0(\%)	100.0
HA134 ASR gain mapping   I-gain 4, 1st-motor	0.0 to 1000.0(\%)	100.0

*ASR: Automatic Speed Regulator

- Speed response gain of the motor control can be changed.
- The PI gain used for control is as follows according to the state of the input terminal 063[CAS] and 064[PPI] terminals.
In the case of input terminal [cas] witching,[HA120]=00



Call 1(800)985-6929 for Sales Chapter 4
hitachiacdrive.com
For parameter configuration

## [HA210] to [HA234]

Code/Name	Range (unit)	Initial value
HA210 Stabilization constant, 2nd-motor	Same as HA110	
HA215 speed response, 2nd-motor	Same as HA115	
HA220 ASR gain switching mode selection, 2nd-motor	Same as HA120	
HA221 ASR gain switching time setting, 2ndmotor	Same as HA121	
HA222 ASR gain mapping intermediate speed 1, 2nd-motor	Same as HA122	
HA223 ASR gain mapping intermediate speed 2, 2nd-motor	Same as HA123	
HA224 ASR gain mapping maximum speed,   2nd-motor	Same as HA124	
HA225 ASR gain mapping P-gain 1, 2ndmotor	Same as HA125	
HA226 ASR gain mapping l-gain 1, 2ndmotor	Same as HA126	
HA227 ASR gain mapping P control P-gain 1,   2nd-motor	Same as HA127	
HA228 ASR gain mapping P-gain 2, 2ndmotor	Same as HA128	
HA229 ASR gain mapping l-gain 2, 2ndmotor	Same as HA129	
HA230 ASR gain mapping P control P-gain 2,   2nd-motor	Same as HA130	
HA231 ASR gain mapping P-gain 3, 2ndmotor	Same as HA131	
HA232 ASR gain mapping l-gain 3, 2ndmotor	Same as HA132	
HA233 ASR gain mapping P-gain 4, 2ndmotor	Same as HA133	
HA234 ASR gain mapping l-gain 4, 2ndmotor	Same as HA134	

[ $\mathrm{Hb} 1 \underline{02]}$ to [ $\mathrm{Hb} 1 \underline{08]}$

## Basic parameters for Induction motor

Code/Name	Range (unit)	Initial value
Hb102 Async.   Motor capacity setting, 1st-motor	$\begin{aligned} & 0.01 \text { to } \\ & 160.00(\mathrm{~kW}) \\ & (0.01 \text { to } \\ & 500.00(\mathrm{~kW}) \end{aligned}$	Motor capacity setting (For the P1-1600H to P12200 H models, the maximum setting range is $500.00(\mathrm{~kW})$.)
Hb103 Async.   Motor number of poles setting, 1stmotor	2 to 48 (Pole)	4 P
Hb104 Async.   Motor base frequency setting, 1st-motor	$\begin{aligned} & 10.00 \text { to } \\ & {[\mathrm{Hb} 105](\mathrm{Hz})} \end{aligned}$	60.00(JPN)(USA)/   50.00(EU)(ASIA)(CHN)
Hb105 Async.   Motor maximum frequency setting, 1st-motor	[Hb104] to $590.00(\mathrm{~Hz})$	60.00(JPN)(USA)/   50.00(EU)(ASIA)(CHN)
Hb106 Async.   Motor rated voltage, 1st-motor	1 to 1000 (V)	```(200V Class) 200(JPN) 230(EU)(USA)(ASIA)(CHN) (400V Class) 400(JPN)(EU)(ASIA)(CHN) 460(USA)```
Hb108 Async.   Motor rated current, 1st-motor	$\begin{aligned} & 0.01 \text { to } \\ & 10000.00(\mathrm{~A}) \end{aligned}$	Motor capacity setting

- If the motor capacity [Hb102] and number of poles [Hb103] are changed, the motor characteristics are set according to the internal Hitachi table values.
- The output is decided by setting the frequency and voltage. Below there is an example of $\mathrm{V} / \mathrm{f}$ control.

- By setting the motor rated current, a reference current for the motor protection is set.
※Initial value depends on the inverter.

Motor typical data	Code	Range of values (Unit)
Capacity	$[\mathrm{Hb} 102]$	0.01 to $160.00(\mathrm{~kW})$   $(0.01$ to $500(\mathrm{~kW})$   for P1-1600 to P1-2200H)
	$[\mathrm{Hb} 103]$	2 to $48(\mathrm{poles})$
	$[\mathrm{Hb} 104]$	10.00 to $590.00(\mathrm{~Hz})$
	$[\mathrm{Hb} 105]$	10.00 to $590.00(\mathrm{~Hz})$
Voltage	$[\mathrm{Hb} 106]$	1 to $1000(\mathrm{~V})$
Current	$[\mathrm{Hb} 108]$	0.01 to $10000.00(\mathrm{~A})$

[ Hb 110 ] to [Hb131]
Induction motor constants

Code/Name	Range (unit)	Initial   value
Hb110 Async.   Motor constant R1,   1st-motor	0.000001 to $1000.000000(\Omega)$	Motor   capacity   setting
Hb112 Async.   Motor constant R2,   1st-motor	0.000001 to 1000.000000 ( $\Omega$ )	Motor   capacity   setting
Hb114 Async.   Motor constant L,   1st-motor	0.000001 to 1000.000000 (mH)	Motor   capacity   setting
Hb116 Async.   Motor constant I0,   1st-motor	0.01 to 10000.00 (A)	Motor   capacity   setting
Hb118 Async.   Motor constant J,   1st-motor	0.00001 to 10000.00000   (kgm2)	Motor   capacity   setting

- If the motor capacity[Hb102] and number of poles [ Hb 103 ] are changed, the motor characteristics are set according to the internal Hitachi table values.
- For no-rotation auto-tuning, the following variables are acquired:[Hb110] to [Hb114].
- For rotation auto-tuning, the following variables are acquired:[Hb110] to [Hb118]
- It is possible to input the data obtained from the motor manufacturer. However, it must also include the data of the wiring and the like.


## Minimum frequency setting

Code/Name	Range (unit)	Initial   value
Hb130 Minimum frequency   adjustment, 1st-motor	0.10 to $10.00(\mathrm{~Hz})$	0.50
Hb131 Reduced voltage start   time setting, 1st-motor	0 to $2000(\mathrm{~ms})$	36

- If the torque at the time of start-up is not enough, you can change the setting to raise the lowest frequency.
- if the trip occurs when raised the minimum frequency, set a longer "reduced voltage start time setting".

[Hb140] to [Hb146]
Manual torque boost adjustment

Code/Name	Range (unit)	Initial   value
Hb140 Manual torque   boost operation mode   selection, 1st-motor	00(Disabled)/   01(Always enable)/   02(Enable at   Forward rotation)/   03(Enable at   Reverse rotation)	01
Hb141 Manual torque   boost value, 1st-motor	0.0 to 20.0(\%)	0.0
Hb142 Manual torque   boost peak speed, 1st-motor	0.0 to 50.0(\%)	0.0

- The manual torque operation mode selection will allow to restrict the boost to forward only or reverse only operation.
- Example [Hb140]=02



## Eco Drive function

Code/Name	Range (unit)	Initial   value
Hb145 Eco drive enable, 1st-   motor	O0(Disable)/   01(Enable)	00
Hb146 Eco drive response   adjustment, 1st-motor	0 to 100	050

- In V/f control, if the Eco Drive function is enabled, enters an energy saving control.

Call 1(800)985-6929 for Sales Chapter 4

## [ Hb 150 ] to [Hb171]

Free V/f setting

Code/Name	Range (unit)	Initial value
Hb150 Free-V/f frequency 1 setting, 1stmotor	$\begin{aligned} & 0.00 \text { to } \\ & {[\mathrm{Hb} 152](\mathrm{Hz})} \end{aligned}$	0.00
Hb151 Free-V/f voltage 1 setting, 1stmotor	$\begin{aligned} & 0.0 \text { to } \\ & 1000.0(\mathrm{~V}) \end{aligned}$	0.0
Hb152 Free-V/f frequency 2 setting, 1stmotor	[Hb150] to [Hb154](Hz)	0.00
Hb153 Free-V/f voltage 2 setting, 1st-   motor	$\begin{aligned} & 0.0 \text { to } \\ & 1000.0(\mathrm{~V}) \end{aligned}$	0.0
Hb154 Free-V/f frequency 3 setting, 1st-   motor	$\begin{aligned} & \text { [Hb152] to } \\ & {[\mathrm{Hb} 156](\mathrm{Hz})} \end{aligned}$	0.00
Hb155 Free-V/f voltage 3 setting, 1st-   motor	$\begin{aligned} & 0.0 \text { to } \\ & 1000.0(\mathrm{~V}) \end{aligned}$	0.0
Hb156 Free-V/f frequency 4 setting, 1stmotor	[Hb154] to [Hb158](Hz)	0.00
Hb157 Free-V/f voltage 4 setting, 1stmotor	$\begin{aligned} & 0.0 \text { to } \\ & 1000.0(\mathrm{~V}) \end{aligned}$	0.0
Hb158 Free-V/f frequency 5 setting, 1stmotor	[Hb156] to [Hb160](Hz)	0.00
Hb159 Free-V/f voltage 5 setting, 1stmotor	$\begin{aligned} & 0.0 \text { to } \\ & 1000.0(\mathrm{~V}) \end{aligned}$	0.0
Hb160 Free-V/f frequency 6 setting, 1stmotor	[Hb158] to [Hb162](Hz)	0.00
Hb161 Free-V/f voltage 6 setting, 1stmotor	0.0 to 1000.0(V)	0.0
Hb162 free-V/f frequency 7 setting, 1stmotor	[Hb160] to [Hb104](Hz)	0.00
Hb163 Free-V/f voltage 7 setting, 1stmotor	$\begin{aligned} & 0.0 \text { to } \\ & 1000.0(\mathrm{~V}) \end{aligned}$	0.0

- Frequency 1(f1) to frequency (f7) and the corresponding voltage 1(V1) to voltage 7(V7) are set below the base frequency and rated voltage. In the case of a highfrequency motor, set the base/highest frequency at first.



## V/f feedback control adjustment

Code/Name	Range (unit)	Initial value
Hb170 Slip compensation P-gain   at V/f with encoder, 1st-motor	0 to 1000(\%)	100
Hb171 Slip compensation I-gain   at V/f with encoder, 1st-motor	0 to 1000(\%)	100

- When [AA121] is set as feedback control, slip compensation is possible.


## [Hb180] [Hb2 $\underline{02]}$ to [Hb280]

## Output voltage adjustment

Code/Name	Range (unit)	Initial value
Hb180 Output voltage gain, 1st-   motor	0 to 255(\%)	100

- When the motor is hunting, there is a possibility that the motor stabilizes by adjustment of the output voltage gain.

2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range   (unit)	Initial   value
Hb202 Async. Motor capacity setting, 2nd-motor	Same as Hb102	
Hb203 Async. Motor number of poles setting, 2nd-   motor	Same as Hb103	
Hb204 Async. Motor base frequency setting, 2nd-   motor	Same as Hb104	
Hb205 Async. Motor maximum frequency setting,   2nd-motor	Same as Hb105	
Hb206 Async. Motor rated voltage, 2nd-motor	Same as Hb106	
Hb208 Async. Motor rated current, 2nd-motor	Same as Hb108	
Hb210 Async. Motor constant R1, 2nd-motor	Same as Hb110	
Hb212 Async. Motor constant R2, 2nd-motor	Same as Hb112	
Hb214 Async. Motor constant L, 2nd-motor	Same as Hb114	
Hb216 Async. Motor constant lo, 2nd-motor	Same as Hb116	
Hb218 Async. Motor constant J, 2nd-motor	Same as Hb118	

2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range   (unit)	Initial   value
Hb230 Minimum frequency adjustment, 2nd-motor	Same as Hb130	
Hb231 Reduced voltage start time setting, 2nd-   motor	Same as Hb131	
Hb240 Manual torque boost operation mode   selection, 2nd-motor	Same as Hb140	
Hb241 Manual torque boost value, 2nd-motor	Same as Hb141	
Hb242 Manual torque boost Peak speed, 2nd-motor	Same as Hb142	
Hb245 Eco drive enable, 2nd-motor	Same as Hb145	
Hb246 Eco drive response adjustment, 2nd-motor	Same as Hb146	
Hb250 Free-V/f frequency 1 setting, 2nd-motor	Same as Hb150	
Hb251 Free-V/f voltage 1 setting, 2nd-motor	Same as Hb151	
Hb252 Free-V/f frequency 2 setting, 2nd-motor	Same as Hb152	
Hb253 Free-V/f voltage 2 setting, 2nd-motor	Same as Hb153	
Hb254 Free-V/f frequency 3 setting, 2nd-motor	Same as Hb154	
Hb255 Free-V/f voltage 3 setting, 2nd-motor	Same as Hb155	
Hb256 Free-V/f frequency 4 setting, 2nd-motor	Same as Hb156	
Hb257 Free-V/f voltage 4 setting, 2nd-motor	Same as Hb157	
Hb258 Free-V/f frequency 5 setting, 2nd-motor	Same as Hb158	
Hb259 Free-V/f voltage 5 setting, 2nd-motor	Same as Hb159	
Hb260 Free-V/f frequency 6 setting, 2nd-motor	Same as Hb160	
Hb261 Free-V/f voltage 6 setting, 2nd-motor	Same as Hb161	
Hb262 Free-V/f frequency 7 setting, 2nd-motor	Same as Hb162	
Hb263 Free-V/f voltage 7 setting, 2nd-motor	Same as Hb163	
Hb270 Slip compensation P-gain at V/f with encoder,   2nd-motor	Same as Hb170	
Hb271 Slip compensation I-gain at V/f with encoder,   2nd-motor	Same as Hb171	
Hb280 Output voltage gain, 2nd-motor	Same as Hb180	

## [ $\mathrm{HC1}$ 101] to [HC121]

## Automatic torque boost adjustment

Code/Name	Range (unit)	Initial   value
HC101 Automatic torque boost   voltage compensation gain, 1st-motor	0 to 255(\%)	100
HC102 Automatic torque boost slip   compensation gain, 1st-motor	0 to 255(\%)	100

- These parameters are adjusted when the automatic torque boost control function is selected in [AA121]. For more information, refer to the P1 user's guide.


## Vector control start adjustment

Code/Name	Range (unit)	Initial value
HC110 Zero speed range limit,   1st-motor(IM-0Hz-SLV)	0 to $100(\%)$	80
HC111 Boost value at start,   1st-motor (IM-SLV,IM-CLV)	0 to 50(\%)	0
HC112 Boost value at start,   1st-motor (IM-OHz-SLV)	0 to 50(\%)	10

- When [AA121] is sensorless vector control or OHz-range sensorless vector control, start boost is possible.


## Secondary resistor compensation function

Code/Name	Range (unit)	Initial   value
HC113 Secondary resistance   (R2) correction, 1st-motor	00(Disable)/   $01($ Enable)	00

- When the vector control (with encoder/ sensorless/0Hz) is being used and the temperature of the motor can be sensed, the inverter is capable of reducing the speed variations due to temperature changes.
- If use this function, use a thermistor PB-41E from Shibaura Electronics(Ltd.) with [Cb-40]=02(NTC).


## Reverse run protection function

Code/Name	Range (unit)	Initial   value
HC114 Direction reversal   protection, 1st-motor	00(Disable)/   01(Enable)	00

- This function is to prevent the change of direction of the output in a low frequency range for vector control such as (SLV/OHz-SLV/CLV)
[ $\mathrm{HC1} \underline{20}$ ] to [HC221]
Motor control adjustment gain

Code/Name	Range (unit)	Initial   value
HC120 Torque current reference filter   time constant, 1st-motor	0 to $100(\mathrm{~ms})$	2
HC121 Speed feedforward   compensation gain, 1st-motor	0 to 1000(\%)	0

- [HC120] can put into effect a filter for torque reference of sensorless vector control, OHz sensorless vector control and vector control with encoder.
- [HC121] adjusts the compensation amount of feedforward control for sensorless vector control, 0 Hz sensorless vector control, and vector control with encoder.

2nd motor When Intelligent Input terminal 024[SET] is enabled.		
Code/Name	Range   (unit)	Initial   value
HC201 Automatic torque boost voltage   compensation gain, 2nd-motor	Same as HC101	
HC202 Automatic torque boost slip   compensation gain, 2nd-motor	Same as HC102	
HC210 zero speed range limit, 2nd-   motor(IM-0Hz-SLV)	Same as HC110	
HC211 Boost value at start, 2nd-motor (IM-   SLV,IM-CLV)	Same as HC111	
HC212 Boost value at start, 2nd-motor (IM-   0Hz-SLV)	Same as HC112	
HC213 Secondary resistor (R2)   compensation enable, 2nd-motor	Same as HC113	
HC214 Direction reversal protection, 2nd-   motor	Same as HC114	
HC215 Torque conversion method   selection, 2nd-motor	Same as HC115	
HC220 Torque current reference filter time   constant, 2nd-motor	Same as HC120	
HC221 Speed feedforward compensation   gain, 2nd-motor	Same as HC121	

Torque reference value conversion method

Code/Name	Range (unit)	Initial   value
HC115 Torque conversion   method selection, 1st-motor *1)	00 (Torque)/   01 (Current)	00

*1) [HC115]/[HC215] are parameters added to Ver2.02 or later.

- Select the $100 \%$ reference value of the torque related setting parameter. (Setting 01 is the same method as the SJ700 series.)
For details, refer to the P1 User's Guide.

Call 1(800)985-6929 for Sales
Chapter 4

## [Hd102] to [Hd118]

Permanent Magnet Sync. Motor(SM/PMM) basic parameters

Code/Name	Range (unit)	Initial value
Hd102 sync. Motor capacity setting, 1stmotor	$\begin{aligned} & 0.01 \text { to } \\ & 160.00(\mathrm{~kW}) \\ & (0.01 \text { to } \\ & 500.00(\mathrm{~kW}) \end{aligned}$	Factory setting (The maximum value of the setting range is 500.00 (kW) for P1-1600H to P12200H.)
Hd103 Sync. Motor number of poles setting 1st-motor	2 to 48(Pole)	Factory setting
Hd104 Sync. Base frequency setting, 1stmotor	$\begin{aligned} & 10.00 \text { to } \\ & {[\mathrm{Hd} 105](\mathrm{Hz})} \end{aligned}$	60.00(JPN)(USA)/   50.00(EU)(ASIA)(CHN)
Hd105 sync. Maximum frequency setting, 1st-motor	[Hd104] to 590.00(Hz)	60.00(JPN)(USA)/   50.00(EU)(ASIA)(CHN)
Hd106 sync. Motor rated voltage, 1st-motor	1 to 1000(V)	```(200V Class) 200(JPN) 230(EU)(USA)(ASIA)(CHN) (400V Class) 400(JPN)(EU)(ASIA)(CHN) 460(USA)```
Hd108 sync. Motor rated current, 1st-motor	$\begin{aligned} & \hline 0.01 \text { to } \\ & 10000.00 \text { (A) } \end{aligned}$	Factory setting


Code/Name	Range (unit)	Initial   value
Hd110 Sync. Motor   constant R, 1st-motor	0.000001 to $1000.000000(\Omega)$	Factory   setting
Hd112 Sync. Motor   constant Ld, 1st-motor	0.000001 to 1000.000000   (mH)	Factory   setting
Hd114 Sync. Motor   constant Lq, 1st-motor	0.000001 to 1000.000000   (mH)	Factory   setting
Hd116 Sync. Motor   constant Ke, 1st-motor	0.1 to $100000.0(\mathrm{mVs} / \mathrm{rad})$	Factory   setting
Hd118 Sync. Motor   constant J, 1st-motor	0.00001 to 10000.00000   (kgm2)	Factory   setting

- The motor capacity and the number of poles will be set by Hitachi characteristics table.
- For SM/PMM, frequency, voltage, and the motor constants setting are necessary.
- If the maximum current is decided, sets with a margin the overcurrent detection level [bb160].

Motor typical data	Code	Range of values (unit)
Capacity	[Hd102]	0.01 to $160.00(\mathrm{~kW})$   $(0.01$ to $500.00(\mathrm{~kW})$   for P1-1600H to P1-2200H)
	$[\mathrm{Hd103]}$	2 to $48($ Poles $)$
Frequency	$[\mathrm{Hd104}]$	10.00 to $590.00(\mathrm{~Hz})$
	$[\mathrm{Hd105}]$	10.00 to $590.00(\mathrm{~Hz})$
Voltage	$[\mathrm{Hd106}]$	1 to $1000(\mathrm{~V})$
Current	$[\mathrm{Hd108}]$	0.01 to $10000.00(\mathrm{~A})$

※Initial value depends on the inverter.

- If motor capacity [Hd102], number of poles [Hd103] are changed, the motor characteristics are set according to the internal Hitachi table values.
- The values of [Hd110] to [Hd114] can be acquired by no rotation auto-tuning.
[Hd130] to [Hd-58]
Minimum frequency setting

Code/Name	Range (unit)	Initial   value
Hd130 Minimum frequency   adjustment for Sync.M, 1st-motor	0 to 50(\%)	8
Hd131 No-Load current for Sync.M,   1st-motor	0 to 100(\%)	10

- The synchronous control is switched to sensorless vector control when the frequency refrence is the base
frequency[Hd104] $\times[\mathrm{Hd} 130]$.
- By [Hd131], the sensorless vector control no-load current is set.

Magnetic pole position estimation SM(PMM)

Code/Name	Range (unit)	Initial   value
Hd132 Starting method for   Sync.M, 1st-motor	00(Synchronous)/   01(Initial motor position   estimate (IMPE))	00
Hd133 IMPE 0V wait number   for Sync.M, 1st-motor	0 to 255	10
Hd134 IMPE detect wait   number for Sync.M, 1st-motor	0 to 255	10
Hd135 IMPE detect number   for Sync.M, 1st-motor	0 to 255	30
Hd136 IMPE voltage gain for   Sync.M, 1st-motor	0 to 200(\%)	100
Hd137 IMPE Mg-pole position   offset, 1st-motor	0 to 359(deg)	0

- For SM/PMM, if initial motor position estimate is enabled by [Hd132], the inverter drives after magnetic pole position estimation. Offset [Hd137] is added at the first start when doing reverse motion.


## IVMS setting

Code/Name	Range(unit)	Initial   Value
Hd-41 IVMS carrier frequency	0.5   $16.0(\mathrm{kHz})$	2.0
Hd-42 Filter gain of IVMS current   detection	0 to 1000	100
Hd-43 Open-phase voltage detection gain	$00 / 01 / 02 / 03$	00
Hd-44 Open-phase switching threshold   compensation	00 (Disable)/   $01($ Enable)	01
Hd-45 SM(PMM)-IVMS speed control   P gain	0 to 1000	100
Hd-46 SM(PMM)-IVMS speed control   I gain	0 to 10000	100
Hd-47 SM(PMM)-IVMS wait time for   open-phase switching,	0 to 1000	15
Hd-48 SM(PMM)-IVMS restriction on the   rotation-direction determination	$00($ Disable)/   $01($ Enable)	01
Hd-49 SM(PMM)-IVMS open-phase   voltage detection timing adjustment,	0 to 1000	10
Hd-50 SM(PMM)-IVMS minimum pulse   width adjustment,	0 to 1000	100
Hd-51 IVMS threshold current limit	0 to 255(\%)	100
Hd-52 IVMS threshold gain	0 to 255(\%)	100
Hd-58 IVMS carrier-frequency switching   start/finish point 1)	0 to 50(\%)	5

*1) Depends on the base frequency

- Above parameters are for adjustment in SM(PMM) driving with IVMS.

Call 1(800)985-6929 for Sales Chapter 4
hitachiacdrive.com
For parameter configuration

## [Hd2O2] to [Hd237]

2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name		Range (unit)	Initial value
$\sum$$\sum$$\sum$$i$$i$$i$$\vdots$$i$$i$	Hd202   Sync. Motor capacity setting, 2nd-motor	Same as Hd102	
	Hd203   Sync. Motor number of poles setting, 2nd-motor	Same as Hd103	
	Hd204 Sync. Base frequency setting, 2ndmotor	Same as Hd104	
	Hd205 Sync. Maximum frequency setting, 2nd-motor	Same as Hd105	
	Hd206 Sync. Motor rated voltage, 2ndmotor	Same as Hd106	
نِ	Hd208 Sync. Motor rated current, 2ndmotor	Same as Hd108	
$\begin{aligned} & \sim \\ & 0 \\ & \hline \end{aligned}$	Hd210 Sync. Motor constant R, 2ndmotor	Same as Hd110	
$\begin{aligned} & 1 \\ & \sum_{0}^{\pi} \\ & \hline \end{aligned}$	Hd212 Sync. Motor constant Ld, 2ndmotor	Same as Hd112	
$\begin{gathered} \dot{L} \\ \frac{\Sigma}{2} \end{gathered}$	Hd214 Sync. Motor constant Lq, 2ndmotor	Same as Hd114	
	Hd216 Sync. Motor constant Ke, 2ndmotor	Same as Hd116	
	Hd218 Sync. Motor constant J, 2nd-motor	Same as Hd118	

2nd motor When Intelligent Input terminal 024[SET] is enabled.

Code/Name	Range   (unit)	Initial   value
Hd230 Minimum frequency adjustment for   Sync.M, 2nd-motor	Same as Hd130	
Hd231 No-Load current for Sync.M, 2nd-   motor	Same as Hd131	
Hd232 Starting method for Sync.M, 2nd-motor	Same as Hd132	
Hd233 IMPE 0V wait number for Sync.M, 2nd-   motor	Same as Hd133	
Hd234 IMPE detect wait number for Sync.M,   2nd-motor	Same as Hd134	
Hd235 IMPE detect number for Sync.M, 2nd-   motor	Same as Hd135	
Hd236 IMPE voltage gain for Sync.M, 2nd-   motor	Same as Hd136	
Hd237 IMPE Mg-pole position offset, 2nd-   motor	Same as Hd137	

## [oA-10] to [oA-33][ob-01] to [ob-04]

Parameter mode (o code)

- "0" parameters are displayed by the [UA-22] = 01. This configuration is not necessary except when option is used.
- The implementation of the following parameters might differ depending on the type of option being used. For more information, refer to the Option's User's guide and the P1 User's guide.


## Optional cassette error operation

Code/Name	Range (unit)	Initial value
oA-10 Operation selection at an option error (SLOT-1)	00(Error)/   01((Ignore error (keep running))	00
oA-11 communication Watch Dog Timer (SLOT-1)	0.00 to 100.00(s)	1.00
0A-12 Action selection at a communication error (SLOT-1)	00(Error)/   01(Trip after Deceleration stop)/02(Ignore)/   03(Free run stop)/   04(Deceleration stop)	01
OA-13 RUN command selection at start up (SLOT-1)	00(Disable)/   01(Enable)	00
oA-20 Operation selection at an option error (SLOT-2)	00(Error)/   01((Ignore error (keep running))	00
oA-21 communication Watch Dog Timer (SLOT-2)	0.00 to 100.00(s)	1.00
0A-22 Action selection at a communication error (SLOT-2)	```00(Error)/ 01(Trip after Deceleration stop)/ 02(Ignore)/ 03(Free run stop)/ 04(Deceleration stop)```	01
OA-23 RUN command selection at start up (SLOT-2)	00(Disable)/   01(Enable)	00
oA-30 Operation selection at an option error (SLOT-3)	00(Error)/   01((Ignore error (keep running))	00
oA-31 communication Watch Dog Timer (SLOT-3)	0.00 to 100.00(s)	1.00
0A-32 Action selection at a communication error (SLOT-3)	00(Error)/   01(Trip after Deceleration stop)/02(Ignore)/   03(Free run stop)/   04(Deceleration stop)	01
OA-33 RUN command selection at start up (SLOT-3)	00(Disable)/   01(Enable)	00

- In P1-CCL CC-Link communication option, there are no dedicated parameters other than the above parameters. For more information, refer the Optional Guide and P1 User's Guide


## P1-FB Encoder Feedback Option setting

Code/Name	Range (unit)	Initial   value
Ob-01   Encoder constant setting	32 to 65535 (pls)	1024
Ob-02 Encoder phase   sequence selection	00(A Phase lead)/   01(B Phase lead)	0
Ob-03 Motor gear ratio   numerator	1 to 10000	1
Ob-04 Motor gear ratio   denominator	1 to 10000	1

- Above parameters set the main encoder input and the motor gear ratio involved in the encoder feedback for the P1-FB.

Call 1(800)985-6929 for Sales
Chapter 4
hitachiacdrive.com
sales@hitachiacdrive.com
For parameter configuration
[ob-10] to [ob-16][oC-01] to [oC-28]
P1-FB Encoder Feedback Option
Pulse train input terminal setting

Code/Name	Range (unit)	Initial   value
ob-10 Pulse train input,   target function selection   (option)	00(Frequency reference)/   01(Pulse train position   reference)	00
ob-11   Pulse train input mode   selection (option)	00(90shift pulse train)/   01(Forward/ Reverse pulse   train and direction signal)/	01
02(Forward pulse train and   Reverse pulse train)	01	
ob-12 Pulse train   frequency scale (option)	0.05 to 200.00(kHz)	25.00
ob-13 Pulse train   frequency filter time   constant (option)	0.01 to 2.00(s)	0.10
ob-14 Pulse train   frequency bias value   (option)	-100.0 to 100.0(\%)	0.0
ob-15 Pulse train upper   frequency detection   level( option)	0.0 to 100.0(\%)	100.0
ob-16 Pulse train lower   frequency detection level   (option)	0.0 to 100.0(\%)	0.0

- Set when using the option feedback.
- For more detail, refer to optional board User's Guide.

P1-FS Functional Safety Option operation

Code/Name	Range(unit)	Initial value
OC-01 Safety option input display selection	00(Warning: with display)/   01(Warning: without display)	00
$\mathrm{OC}-10 \mathrm{SS1-A}$   deceleration time setting	0.00 to 3600.00(s)	30.00
OC-12 SLS-A   deceleration time setting	0.00 to 3600.00(s)	30.00
OC-14 sLS-A speed upper limit (Forward)	0.00 to 590.00(Hz)	0.00
OC-15 sLS-A speed upper limit (Reverse)	0.00 to 590.00 (Hz)	0.00
OC-16 SDI-A   deceleration time setting	0.00 to 3600.00(s)	30.00
OC-18 SDI-A direction   limit mode	00(Limit) 01(Invert)	00
oC-20 ss1-B   deceleration time setting	0.00 to 3600.00(s)	30.00
OC-22 sLs-B   deceleration time setting	0.00 to 3600.00(s)	30.00
OC-24 sLs-B speed upper limit (Forward)	0.00 to 590.00 (Hz)	0.00
OC-25 sLs-B speed upper limit (Reverse)	0.00 to 590.00 (Hz)	0.00
oC-26 sDI-B   deceleration time setting	0.00 to 3600.00(s)	30.00
OC-28   SDI-B direction limit mode	00(Limit)/01(Invert)	00

- For more detail, refer to optional board User's Guide.
[oE-01] to [oE-33]


## P1-AG Analog Input/Output Option analog input adjustment

Code/Name	Range (unit)	Initial value
oE-01 [Ai4]   Filter time constant	1 to 500(ms)	16
OE-03 [Ai4] Start value	0.00 to 100.00(\%)	0.00
OE-04 [Ai4] End value	0.00 to 100.00(\%)	100.00
OE-05 [Ai4] Start rate	0.0 to [oE-06] (\%)	0.0
OE-06 [Ai4] End rate	[oE-05] to 100.0(\%)	100.0
OE-07 [Ai4]   Start point selection	$\begin{aligned} & \text { 00(Start value[oE-03])/ } \\ & 01(0 \%) \end{aligned}$	01
oE-11 [Ais]   Filter time constant	1 to 500(ms)	16
oE-13 [Ai5] Start value	0.00 to 100.00(\%)	0.00
OE-14 [Ai5] End value	0.00 to 100.00(\%)	100.00
OE-15 [Ai5] Start rate	0.0 to [oE-16] (\%)	0.0
0E-16 [Ai5] End rate	[oE-15] to 100.0(\%)	100.0
oE-17 [Ai5]   Start point selection	$\begin{aligned} & \text { 00(Start value[oE-13])/ } \\ & 01(0 \%) \end{aligned}$	01
oE-21 [Ai6]   Filter time constant	1 to 500(ms)	16
OE-23 [Ai6] Start value	-100.00 to 100.00(\%)	-100.00
OE-24 [Ai6] End value	-100.00 to 100.00(\%)	100.00
OE-25 [Ai6] Start rate	-100.0 to [oE-26] (\%)	-100.0
OE-26 [Ai6] End rate	[oE-25] to 100.0(\%)	100.0
OE-28 [Ai4]   Voltage/Current bias adjustment	-100.00 to 100.00(\%)	0.00
oE-29 [Ai4]   Voltage/Current gain adjustment	0.00 to 200.00(\%)	100.00
0E-30 [Ai5]   Voltage/Current bias adjustment	-100.00 to 100.00(\%)	0.00
oE-31 [Ai5]   Voltage/Current gain adjustment	0.00 to 200.00(\%)	100.00
oE-32 [Ai6] Voltage bias adjustment	-100.00 to 100.00(\%)	0.00
oE-33 [Ai6] Voltage gain adjustment	0.00 to 200.00(\%)	100.00

- Regarding the adjustment method of the analog input/output option,refer to the P1 user's guide and P1AG user's guide.

Call 1(800)985-6929 for Sales
Chapter 4
[ $\mathrm{OE}-35$ ] to [oE-49]
P1-AG Analog Input/Output Option Window comparator output condition

Code/Name	Range (unit)	Initial value
oE-35 [Ai4] Window comparator upper limit	0 to 100(\%)	100
oE-36 [Ai4] Window comparator lower limit	0 to 100(\%)	0
oE-37 [Ai4] Window comparator hysteresis width	0 to 10(\%)	0
oE-38 [Ai5] Window comparator upper limit	0 to 100(\%)	100
oE-39 [Ai5] Window comparator lower limit	0 to 100(\%)	0
oE-40 [Ai5] Window comparator hysteresis width	0 to 10(\%)	0
oE-41 [Ai6] Window comparator upper limit	-100 to 100(\%)	100
oE-42 [Ai6] Window comparator lower limit	-100 to 100(\%)	-100
oE-43 [Ai6] Window comparator hysteresis width	0 to 10(\%)	0
oE-44 [Ai4] Temporal operation level set at disconnection or compare event	0 to 100(\%)	0
oE-45 [Ai4] Temporal   operation level implementation timing	00(Disable)/   01(Enable: At WC*   is active)/   02(Enable: At WC*   is not active)	00
oE-46 [Ai5] Temporal operation level set at disconnection or compare event	0 to 100(\%)	0
oE-47 [Ai5] Temporal   operation level implementation timing	00(Disable)/   01(Enable: At WC*   is active)/   02(Enable: At WC*   is not active)	00
oE-48 [Ai6] Temporal operation level set at disconnection or compare event	-100 to 100(\%)	0
oE-49 [Aib] Temporal   operation level implementation timing	00(Disable)/   01(Enable: At WC*   is active)/   02(Enable: At WC*   is not active)	00

- Window comparator function output signals whenever the analog value inputs are within or out of range.
- As for disconnection detection, if is within or out of range, the operation frequency is limited the setting value.
[ $\mathrm{OE}-\underline{50}$ ] to $[\mathrm{OE}-\underline{70}][\mathrm{OH}-\underline{01}] \sim[\mathrm{OH}-\underline{06}]$
P1-AG Analog Input/Output Option
Analog output terminal adjustment

Code/Name	Range (unit)	Initial value
oE-50 [Ao3] Output monitor selection	Set monitor code	dA-01
oE-51 [Ao4] Output monitor selection		dA-01
oE-52 [Ao5] Output monitor selection		dA-01
OE-56 [Ao3] Output filter time constant	1 to 500(ms)	100
oE-57 [Ao3] Data type selection	00(Absolute value)/   01(Signed value)	00
OE-58 [Ao3] Bias adjustment	-100.0 to 100.0(\%)	100.0
OE-59 [Ao3] Gain adjustment	$\begin{gathered} -1000.0 \text { to } \\ 1000.0(\%) \\ \hline \end{gathered}$	100.0
oE-60 Adjustment mode [Ao3] output level	-100.0 to 100.0(\%)	100.0
OE-61 [Ao4] Output filter time constant	1 to 500(ms)	100
0E-62   [Ao4] Data type selection	00(Absolute value)/   01(Signed value)	00
OE-63 [Ao4] Bias adjustment	-100.0 to 100.0(\%)	0.0
OE-64 [Ao4] Gain adjustment	$\begin{gathered} \hline-1000.0 \text { to } \\ 1000.0(\%) \\ \hline \end{gathered}$	100.0
oE-65 Adjustment mode [Ao4] output level	-100.0 to 100.0(\%)	100.0
oE-66 [Ao5] Output filter time constant	1 to 500(ms)	100
0E-67 [Ao5] Data type selection	00(Absolute value)/   01(Signed value)	00
OE-68 [Ao5] Bias adjustment	-100.0 to 100.0(\%)	0.0
OE-69 [Ao5] Gain adjustment	$\begin{gathered} \hline-1000.0 \text { to } \\ 1000.0(\%) \\ \hline \end{gathered}$	100.0
OE-70 Adjustment mode [Ao5] output level	-100.0 to 100.0(\%)	100.0

- Regarding the adjustment method of the analog input/output option, refer to the P1 user's guide and P1AG user's guide.
P1-EN Ethernet communication Option setting

Code/Name	Range (unit)	Initial   value
OH-01 IP-address selection(P1-   EN)	00(Group 1)/   01(Group 2)	00
OH-02 Communication speed   (port-1) (P1-EN)	00(Auto-negotiation)/   01(100M:full duplex)/   02(100M:half duplex)/   03(10M:full duplex)/   04(10M:half duplex)	00
OH-03 Communication speed   (port-2) (P1-EN)	00	
OH-04 Ethernet communication   timeout(P1-EN)	1 to 65535(×10ms)	3000
OH-05   Modbus TCP Port No.(IPv4) (P1-EN)	502,1024 to 65535	502
OH-06   Modbus TCP Port No.(IPv6) (P1-EN)	502,1024 to 65535	502

- Refer to option User's Guide for more details.

Call 1(800)985-6929 for Sales Chapter 4
hitachiacdrive.com
For parameter configuration

## [ $\mathrm{OH}-\underline{20}$ ] to [ $\mathrm{OH}-45$ ]

P1-PB PROFIBUS Communication Option setting

Code/Name	Range (unit)	Initial value
oH-20 Profibus Node address(P1-PB)	0 to 125	0
oH-21 Profibus Clear Mode selection(P1-PB)	(For factory setting. Do not change.)	00
oH-22 Profibus Map selection(P1-PB)		00
$\mathrm{oH}-23$ Profibus master setting selection(P1-PB)		00
oH-24 PROFIBUS Telegram group selection(P1-PB)	$\begin{aligned} & \text { 00(Gr.A)/01(Gr.B)/ } \\ & 02(\mathrm{Gr} . \mathrm{C}) \end{aligned}$	00

- Refer to the Option User's Guide for more details.


## P1-PN PROFINET Communication Option setting

Code/Name	Range (unit)	Initial value
OH-30 PN IP-Address select(P1-   PN)	(For factory setting. Do not change.)	00
oH-31 PN Communication speed (port-1) (P1-PN)		00
oH-32 pN Communication speed (port-2)(P1-PN)		00
OH-33 PN Ethernet communication timeout(P1-PN)		3000
OH-34 PROFINET Telegram group selection	$\begin{aligned} & \text { 00(Gr.A)/01(Gr.B)/ } \\ & \text { 02(Gr.C) } \end{aligned}$	00

[0J-01] to [oJ-2을

## Communication Option Interface

- Group A option I/F flexible command

Code/Name	Range (unit)	Initial value
OJ-01 Writing register 1, Gr.A	0000 to FFFF	0000
OJ-02 Writing register 2, Gr.A	0000 to FFFF	0000
OJ-03 Writing register 3, Gr.A	0000 to FFFF	0000
OJ-04 Writing register 4, Gr.A	0000 to FFFF	0000
OJ-05 Writing register 5, Gr.A	0000 to FFFF	0000
OJ-06 Writing register 6, Gr.A	0000 to FFFF	0000
OJ-07 Writing register 7, Gr.A	0000 to FFFF	0000
OJ-08 Writing register 8, Gr.A	0000 to FFFF	0000
OJ-09 Writing register 9, Gr.A	0000 to FFFF	0000
OJ-10 Writing register 10, Gr.A	0000 to FFFF	0000
OJ-11 Reading register $1 \mathrm{Gr} . \mathrm{A}$	0000 to FFFF	0000
OJ-12 Reading register 2 Gr.A	0000 to FFFF	0000
OJ-13 Reading register $3 \mathrm{Gr} . \mathrm{A}$	0000 to FFFF	0000
OJ-14 Reading register 4 Gr.A	0000 to FFFF	0000
OJ-15 Reading register 5 Gr.A	0000 to FFFF	0000
OJ-16 Reading register 6 Gr.A	0000 to FFFF	0000
OJ-17 Reading register $7 \mathrm{Gr} . \mathrm{A}$	0000 to FFFF	0000
OJ-18 Reading register $8 \mathrm{Gr} . \mathrm{A}$	0000 to FFFF	0000
OJ-19 Reading register 9 Gr.A	0000 to FFFF	0000
OJ-20 Reading register $10 \mathrm{Gr} . \mathrm{A}$	0000 to FFFF	0000

- Refer to the Option User's Guide for more details.
- Refer to the option User's Guide for more details.


## P1-DN DeviceNet Communication Option setting

Code/Name	Range (unit)	Initial   value
OH-40 DeviceNet Node   address (MAC ID)(P1-DN)	0 to 63	0
oH-41 DeviceNet	00(Instance 20, 70)/   01(Instance 21, 71)/   02(Instance 100, 150)/   03(Instance 101, 151)/   04(Instance 101, 153)/   assembly instance number   selection(P1-DN)   05(Instance 110, 111)/   07(Instance 123, 173)/	00
0H-42 DeviceNet speed   unit selection(P1-DN)	00(Hz)/ 01(min-1)	
0H-44 DeviceNet   flexible Gr. format   selection(P1-DN)	00(Gr. A)/01(Gr. B)/02(Gr. C)	00
0H-45 DeviceNet idle		
mode action selection(P1-	00(Trip)/   01(Decel-Trip)/   02(Ignore)/   03(Free run stop)/   04(Decel stop)/	00
DN)		

[^2]
## [0J-21] to [0J-40]

- Group B option I/F flexible command

Code/Name	Range (unit)	Initial   value
OJ-21 Writing register 1, Gr.B	0000 to FFFF	0000
OJ-22 Writing register 2, Gr.B	0000 to FFFF	0000
OJ-23 Writing register 3, Gr.B	0000 to FFFF	0000
OJ-24 Writing register 4, Gr.B	0000 to FFFF	0000
OJ-25 Writing register 5, Gr.B	0000 to FFFF	0000
OJ-26 Writing register 6, Gr.B	0000 to FFFF	0000
OJ-27 Writing register 7, Gr.B	0000 to FFFF	0000
OJ-28 Writing register 8, Gr.B	0000 to FFFF	0000
OJ-29 Writing register 9, Gr.B	0000 to FFFF	0000
OJ-30 Writing register 10, Gr.B	0000 to FFFF	0000
OJ-31 Reading register 1 Gr.B	0000 to FFFF	0000
OJ-32 Reading register 2 Gr.B	0000 to FFFF	0000
OJ-33 Reading register 3 Gr.B	0000 to FFFF	0000
OJ-34 Reading register 4 Gr.B	0000 to FFFF	0000
OJ-35 Reading register 5 Gr.B	0000 to FFFF	0000
OJ-36 Reading register 6 Gr.B	0000 to FFFF	0000
OJ-37 Reading register 7 Gr.B	0000 to FFFF	0000
OJ-38 Reading register 8 Gr.B	0000 to FFFF	0000
OJ-39 Reading register 9 Gr.B	0000 to FFFF	0000
OJ-40 Reading register 10 Gr.B	0000 to FFFF	0000

- Refer to the Option User's Guide for more details.
[0J-41] to [0J-60]
- Group C option I/F flexible command

Code/Name	Range (unit)	Initial value
OJ-41 Writing register 1, Gr.C	0000 to FFFF	0000
OJ-42 Writing register 2, Gr.C	0000 to FFFF	0000
OJ-43 Writing register 3, Gr.C	0000 to FFFF	0000
OJ-44 Writing register 4, Gr.C	0000 to FFFF	0000
OJ-45 Writing register 5, Gr.C	0000 to FFFF	0000
OJ-46 Writing register 6, Gr.C	0000 to FFFF	0000
0J-47 Writing register 7, Gr.C	0000 to FFFF	0000
OJ-48 Writing register 8, Gr.C	0000 to FFFF	0000
OJ-49 Writing register 9, Gr.C	0000 to FFFF	0000
OJ-50 Writing register 10, Gr.C	0000 to FFFF	0000
OJ-51 Reading register 1 Gr.C	0000 to FFFF	0000
OJ-52 Reading register 2 Gr.C	0000 to FFFF	0000
OJ-53 Reading register 3 Gr.C	0000 to FFFF	0000
OJ-54 Reading register 4 Gr.C	0000 to FFFF	0000
OJ-55 Reading register 5 Gr.C	0000 to FFFF	0000
OJ-56 Reading register 6 Gr.C	0000 to FFFF	0000
OJ-57 Reading register 7 Gr.C	0000 to FFFF	0000
OJ-58 Reading register 8 Gr.C	0000 to FFFF	0000
OJ-59 Reading register 9 Gr.C	0000 to FFFF	0000
OJ-60 Reading register 10 Gr.C	0000 to FFFF	0000

- Refer to the Option User's Guide for more details.

Call 1(800)985-6929 for Sales Chapter 4
hitachiacdrive.com
For parameter configuration

## [oL-01] to [oL-36]

P1-EN Ethernet communication Option Group 1 setting

Code/Name	Range (unit)	Initial value
OL-01 IPv4 IP address (1) Gr. 1	0 to 255	192
OL-02 IPv4 IP address (2) Gr. 1	0 to 255	168
OL-03 IPv4 IP address (3) Gr. 1	0 to 255	0
OL-04 IPv4 IP address (4) Gr. 1	0 to 255	2
OL-05 IPv4 subnet mask (1) Gr. 1	0 to 255	255
OL-06 IPv4 subnet mask (2) Gr. 1	0 to 255	255
OL-07 IPv4 subnet mask (3) Gr. 1	0 to 255	255
OL-08 IPv4 subnet mask (4) Gr. 1	0 to 255	0
OL-09 IPv4 default gateway (1) Gr. 1	0 to 255	192
OL-10 IPv4 default gateway (2) Gr. 1	0 to 255	168
OL-11 IPv4 default gateway (3) Gr. 1	0 to 255	0
OL-12 IPv4 default gateway (4) Gr. 1	0 to 255	1
OL-20 IPv6 IP address (1) Gr. 1	0000 to FFFF	0000
OL-21 IPv6 IP address (2) Gr. 1	0000 to FFFF	0000
OL-22 IPv6 IP address (3) Gr. 1	0000 to FFFF	0000
OL-23 IPv6 IP address (4) Gr. 1	0000 to FFFF	0000
OL-24 IPv6 IP address (5) Gr. 1	0000 to FFFF	0000
OL-25 IPv6 IP address (6) Gr. 1	0000 to FFFF	0000
OL-26 IPv6 IP address (7) Gr. 1	0000 to FFFF	0000
OL-27 IPv6 IP address (8) Gr. 1	0000 to FFFF	0000
OL-28 IPv6 Prefix of subnet, Gr. 1	0 to 127	64
OL-29 IPv6 default gateway (1) Gr. 1	0000 to FFFF	0000
OL-30 IPv6 default gateway (2) Gr. 1	0000 to FFFF	0000
OL-31 IPv6 default gateway (3) Gr. 1	0000 to FFFF	0000
OL-32 IPv6 default gateway (4) Gr. 1	0000 to FFFF	0000
OL-33 IPv6 default gateway (5) Gr. 1	0000 to FFFF	0000
OL-34 IPv6 default gateway (6) Gr. 1	0000 to FFFF	0000
OL-35 IPv6 default gateway (7) Gr. 1	0000 to FFFF	0000
OL-36 IPv6 default gateway (8) Gr. 1	0000 to FFFF	0000

- Refer to the Option User's Guide for more details.


## [oL-40] to [oL-76]

P1-EN Ethernet communication Option Group 2 setting

Code/Name	Range (unit)	Initial value
OL-40 IPv4 IP-address (1) Gr. 2	0 to 255	192
OL-41 IPv4 IP-address (2) Gr. 2	0 to 255	168
OL-42 IPv4 IP-address (3) Gr. 2	0 to 255	0
OL-43 IPv4 IP-address (4) Gr. 2	0 to 255	2
OL-44 IPv4 subnet mask (1) Gr. 2	0 to 255	255
OL-45 IPv4 subnet mask (2) Gr. 2	0 to 255	255
OL-46 IPv4 subnet mask (3) Gr. 2	0 to 255	255
OL-47 IPv4 subnet mask (4) Gr. 2	0 to 255	0
OL-48 IPv4 default gateway (1) Gr. 2	0 to 255	192
OL-49 IPv4 default gateway (2) Gr. 2	0 to 255	168
OL-50 IPv4 default gateway (3) Gr. 2	0 to 255	0
OL-51 IPv4 default gateway (4) Gr. 2	0 to 255	1
OL-60 IPv6 IP address (1) Gr. 2	0000 to FFFF	0000
OL-61 IPv6 IP address (2) Gr. 2	0000 to FFFF	0000
OL-62 IPv6 IP address (3) Gr. 2	0000 to FFFF	0000
OL-63 IPv6 IP address (4) Gr. 2	0000 to FFFF	0000
OL-64 IPv6 IP address (5) Gr. 2	0000 to FFFF	0000
OL-65 IPv6 IP address (6) Gr. 2	0000 to FFFF	0000
OL-66 IPv6 IP address (7) Gr. 2	0000 to FFFF	0000
OL-67 IPv6 IP address (8) Gr. 2	0000 to FFFF	0000
OL-68 IPv6 Prefix of subnet, Gr. 2	0 to 127	64
OL-69 IPv6 default gateway (1) Gr. 2	0000 to FFFF	0000
OL-70 IPv6 default gateway (2) Gr. 2	0000 to FFFF	0000
OL-71 IPv6 default gateway (3) Gr. 2	0000 to FFFF	0000
OL-72 IPv6 default gateway (4) Gr. 2	0000 to FFFF	0000
OL-73 IPv6 default gateway (5) Gr. 2	0000 to FFFF	0000
OL-74 IPv6 default gateway (6) Gr. 2	0000 to FFFF	0000
OL-75 IPv6 default gateway (7) Gr. 2	0000 to FFFF	0000
OL-76 IPv6 default gateway (8) Gr. 2	0000 to FFFF	0000

- Refer to the Option User's Guide for more details.

Parameter mode (P code)
Em-force mode setting

Code/Name	Range (unit)	Initial   value
PA-01 Enable   Emergency-force drive   mode	00(Disable)/   01 (Enable)	00
PA-02 Emergency-force   drive frequency reference	0.00 to $590.00(\mathrm{~Hz}) * 1$ )	0.00
PA-03 Emergency-force   drive direction command	00(Forward)/   01 (Reverse)	00
PA-04 Commercial   power supply bypass   function selection	00 (Disable)/   01 (Enable)	00
PA-05 Commercial   power supply bypass   function delay time	0.0 to 1000.0(s)	5.0

*1) The actual setting range is limited to the maximum frequency setting ([Hb105/205] [Hd105/205])

- Settings for EM-force mode in case of abnormality.
- Enable Emergency-force drive mode [PA-01] is set to 01(Enable) and input terminal 105[EMF] is turned on, the forced operation mode is executed.
The output terminal 076[EMFC] turns on during the Emforced drive mode.
- When [PA-04] is set to 01 (enabled), it is possible to switch to the commercial power operation mode (bypass mode) when the specified operation is not able to changed during forced operation. In bypass mode, the output terminal 077 [EMBP] signal in bypass mode is ON and the inverter output is cut off.
For more information, refer to the P1 user's guide.


## Simulation mode setting

Code/Name	Range (unit)	Initial value
PA-20 Simulation mode enable	00(Disable)/01(Enable)	00
PA-21 Error code selection for alarm test	0 to 255	0
PA-22 simulation mode: Optional output selection for the output current monitor	00(Disable)/   01(Parameter[PA-23])/   02(Setting by terminal [Ai1])/   03(Setting by terminal [Ai2])/   04(Setting by terminal [Ai3])/   05(Setting by terminal [Ai4])/   06(Setting by terminal [Ai5])/   07(Setting by terminal [Ai6])	01
PA-23 Optional output value setting for the output current monitor	$\begin{aligned} & 0.0 \text { to } \\ & \text { Inverter rated current } \times 3.0(\mathrm{~A}) \end{aligned}$	0.0
PA-24 simulation mode: Optional output selection for the DC bus voltage monitor	00(Disable)/   01(Parameter[PA-25])/   02(Setting by terminal [Ai1])/   03(Setting by terminal [Ai2])/   04(Setting by terminal [Ai3])/   05(Setting by terminal [Ai4])/   06(Setting by terminal [Ai5])/   07(Setting by terminal [Ai6])	01
PA-25 Optional output value setting for the $D C$ bus voltage monitor	$\begin{aligned} & \hline 200 \mathrm{~V} \text { Class: } \\ & 0.0 \text { to } 450.0(\mathrm{Vdc}) \\ & 400 \mathrm{~V} \text { Class: } \\ & 0.0 \text { to } 900.0(\mathrm{Vdc}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 200 \mathrm{~V}: \\ 270.0 \\ 400 \mathrm{~V}: \\ 540.0 \\ \hline \end{gathered}$
PA-26 simulation mode: Optional output selection for the output voltage monitor	00(Disable)/   01(Parameter[PA-27])/   02(Setting by terminal [Ai1])/   03(Setting by terminal [Ai2])/   04(Setting by terminal [Ai3])/   05(Setting by terminal [Ai4])/   06(Setting by terminal [Ai5])/   07(Setting by terminal [Ai6])	01
PA-27 Optional output value setting for the output voltage monitor	$\begin{aligned} & \hline 200 \mathrm{~V} \text { Class: } \\ & 0.0 \text { to } 300.0(\mathrm{~V}) \\ & 400 \mathrm{~V} \text { Class: } \\ & 0.0 \text { to } 600.0(\mathrm{~V}) \\ & \hline \end{aligned}$	0.0
PA-28 simulation mode: Optional output selection for the output torque monitor	00(Disable)/   01(Parameter[PA-29])/   02(Setting by terminal [Ai1])/   03(Setting by terminal [Ai2])/   04(Setting by terminal [Ai3])/   05(Setting by terminal [Ai4])/   06(Setting by terminal [Ai5])/   07(Setting by terminal [Ai6])	01
PA-29 Optional output value setting for the output torque monitor	-500.0 to 500.0(\%)	0.0
PA-30 simulation mode: Optional frequency matching start enable setting	00(Disable)/   01(Parameter[PA-31])/   02(Setting by terminal [Ai1])/   03(Setting by terminal [Ai2])/   04(Setting by terminal [Ai3])/   05(Setting by terminal [Ai4])/   06(Setting by terminal [Ai5])/   07(Setting by terminal [Ai6])	01
PA-31 Optional frequency matching start setting value	0.0 to $590.0(\mathrm{~Hz})$	0.0

- Settings for the simulation mode functions.

For more information, refer to the P1 user's guide.

Call 1(800)985-6929 for Sales
Chapter 4

## [UA-01] to [UA-19]

Parameter mode (U code)
Password setting

Code/Name	Range (unit)	Initial   value
UA-01 Password for display(UA-10)	0000 to FFFF	0000
UA-02 Password for softlock(UA-16)	0000 to FFFF	0000

- When using the password, display and parameter settings are locked.
- The inverter will be locked by password when setting any value other than 0000. The password can be cancelled by entering the set password. Please note that, the restrictions will not be cancelled if you forget the password.


## keypad display mode

Code/Name	Range (unit)	Initial value
	00(Full display)/   01(Function-specific display)/	
UA-10 Display	02(User setting)/	00
restriction selection	03(Data comparison display)/	

- Limit the displayed contents of the keypad.
- For more information, refer to the P1 User's guide.

Accumulated power display adjustment/clear

Code/Name	Range (unit)	Initial value
UA-12 Accumulated input   power monitor clear	00(Disable)/   01(Clear)	00
UA-13 Display gain for the   accumulated input power monitor	1 to 1000	1
UA-14 Accumulated output   power monitor clear	00(Disable)/   01(Clear)	00
UA-15 Display gain for the   accumulated output power monitor	1 to 1000	1

- If input terminal $039[\mathrm{KHC}]$ is turned ON, the accumulated input power can be clear.
- If input terminal [OKHC] is turned ON, the accumulated output power can be clear.
Software lock operation setting

Code/Name	Range (unit)	Initial value
UA-16 Soft-Lock   selection	00([SFT] terminal)/   01(Always enable)	00
UA-17 Soft-Lock   target selection	00(All data)/   01(All, except speed related   values )	00

- Sets the software lock operation.

Keypad copy function restriction

Code/Name	Range (unit)	Initial value
UA-18   selection	00(Enable R/W by operator)   01(Disable R/W by operator)	00

- Restricts the copy function(keypad VOP Read/Write function).
Keypad low battery warning

Code/Name	Range (unit)	Initial value
UA-19 Low battery	00(Disable)/   01(Warning [LBK] )/   warning enable	00

- Sets the behaviour when the battery in the keypad is low.


## Keypad communication lost operation

Code/Name	Range (unit)	Initial   value
UA-20 Action   selection at keypad   disconnection	00(Error)/   01(Error output after   deceleration stop)/   02(Ignore)/03(Free run stop)/   04(Deceleration stop)	02

## $2^{\text {nd }}$-motor/option parameter display selection

Code/Name	Range (unit)	Initial   value
UA-21 2nd-motor   parameter display   selection	00(Hidden)/01(Display)	01
UA-22 Option   parameter display   selection	00(Hidden)/01(Display)	01

- If options and 2 nd-motor are not used, it is recommended to hide their parameters.
For more information, refer to the P1 User's guide.


## User-parameter setting function

Code/Name	Range (unit)	Initial value
UA-30 User-parameter auto setting function enable	00(Disable)/   01(Enable)	00
UA-31 User-parameter 1 selection	no/   (Parameters   excluding   [UA-31] to [UA-62])	no
UA-32 User-parameter 2 selection		no
UA-33 User-parameter 3 selection		no
UA-34 User-parameter 4 selection		no
UA-35 User-parameter 5 selection		no
UA-36 User-parameter 6 selection		no
UA-37 User-parameter 7 selection		no
UA-38 User-parameter 8 selection		no
UA-39 User-parameter 9 selection		no
UA-40 User-parameter 10 selection		no
UA-41 User-parameter 11 selection		no
UA-42 User-parameter 12 selection		no
UA-43 User-parameter 13 selection		no
UA-44 User-parameter 14 selection		no
UA-45 User-parameter 15 selection		no
UA-46 User-parameter 16 selection		no
UA-47 User-parameter 17 selection		no
UA-48 User-parameter 18 selection		no
UA-49 User-parameter 19 selection		no
UA-50 User-parameter 20 selection		no
UA-51 User-parameter 21 selection		no
UA-52 User-parameter 22 selection		no
UA-53 User-parameter 23 selection		no
UA-54 User-parameter 24 selection		no
UA-55 User-parameter 25 selection		no
UA-56 User-parameter 26 selection		no
UA-57 User-parameter 27 selection		no
UA-58 User-parameter 28 selection		no
UA-59 User-parameter 29 selection		no
UA-60 User-parameter 30 selection		no
UA-61 User-parameter 31 selection		no
UA-62 User-parameter 32 selection		no

- The above parameters store the changed parameters history in [UA-31] to [UA-62] when [UA-30] $=01$, or set the data to be displayed when $[U A-10]=02$. ([UA-10] $=02$ setting is priority)

Call 1(800)985-6929 for Sales Chapter 4

## [UA-90] to [UA-94][Ub-01] to [Ub-05]

MOP keypad setting

Code/Name	Range (unit)	Initial   value
UA-90   Waiting time for turning off the   display(MOP)	0 to 60(min)	0
UA-91   nitial display selection (MOP)	(Select from d----,   F--- parameters)	dA-01
UA-92   Enable auto-return to the   initial display (MOP)	00(Disable)/   01(Enable)	00
UA-93   Enable frequency changes   through monitor display(MOP)	00(Disable)/   01(Enable)	00
UA-94   Enable multi-speed frequency   changes through monitor   display (MOP)	00(Disable)/   01(Enable)	00

- Setting parameter for MOP keypad.

Initialize

Code/Name	Range (unit)	Initial value
Ub-01 Initialize mode selection	00(Disable)/   01(Error history clear)/   02(Data initialize)/   03(Error history clear \& Data initialize)/   04(Error history clear \& Data initialize \& EzSQ clear)/   05(All data except terminal configuration)/   06(All data except communication configuration)   07(All data except terminal \& communication configuration)/   08(EzSQ only)	00
Ub-02 Initialize data selection	00(JP)/01(EU)/   02(US)/03(CHN)	
Ub-03   Load type selection	00(Very Low Duty)/   01(Low Duty)/   02(Normal Duty)	02
Ub-05 Enable initialization	00(Disable)/   01(Execute initialization)	00

- How to initialize; at first select the initial mode at [Ub01], next, when [Ub-05] is set to 1 , initialize process is start.
- Once setting the load type selection [Ub-03], the inverter load rating will be changed instantaneously.


## Factory setting

Code/Name	Range (unit)	Initial value
UC-01 (-)	(Do not change)	$(00)$

*1) Trace start is also possible from ON of input terminal 108[DTR] or from ProDriveNext.And while the inverter is in trace function, the output terminal [TRA] turns ON.
For more information, refer to the P1 User's guide and the PC setting software ProDriveNext's instruction manual(NT8001*X).

## Trace function

Code/Name	Range (unit)	Initial value
Ud-01 Trace function enable	00(Disable)/01(Enable)	00
Ud-02 Trace start ${ }^{*}$ )	00(Stop)/01(Start)	00
Ud-03 Number of trace data setting	0 to 8	1
Ud-04 Number of trace signals setting	0 to 8	1
Ud-10 Trace data 0 selection		dA-01
Ud-11 Trace data 1 selection		dA-01
Ud-12 Trace data 2 selection		dA-01
Ud-13 Trace data 3 selection	(parameters of the	dA-01
Ud-14 Trace data 4 selection	$\mathrm{d}^{* * * *}$ and $\mathrm{F}^{* * * *}$ mode)	dA-01
Ud-15 Trace data 5 selection		dA-01
Ud-16 Trace data 6 selection		dA-01
Ud-17 7 Trace data 7 selection		dA-01
Ud-20 Trace signal 0 input/output selection	00(Input:[Ud-21])/   01(Output:[Ud-22])	00
Ud-21 Trace signal 0 input terminal selection	Same as [CA-01]	001
Ud-22 Trace signal 0 output terminal selection	Same as [CC-01]	001
Ud-23 Trace signal 1 input/output selection	$\begin{aligned} & \text { 00(Input:[Ud-24])/ } \\ & \text { 01(Output:[Ud-25]) } \end{aligned}$	00
Ud-24 Trace signal 1 input terminal selection	Same as [CA-01]	001
Ud-25 Trace signal 1 output terminal selection	Same as [CC-01]	001
Ud-26 Trace signal 2 input/output selection	00(Input:[Ud-27])/   01(Output:[Ud-28])	00
Ud-27 Trace signal 2 input terminal selection	Same as [CA-01]	001
Ud-28 Trace signal 2 output terminal selection	Same as [CC-01]	001
Ud-29 Trace signal 3 input/output selection	00(Input:[Ud-30])/   01(Output:[Ud-31])	00
Ud-30 Trace signal 3 input terminal selection	Same as [CA-01]	001
Ud-31 Trace signal 3 output terminal selection	Same as [CC-01]	001
Ud-32 Trace signal 4 input/output selection	00(Input:[Ud-33])/   01(Output:[Ud-34])	00
Ud-33 Trace signal 4 input terminal selection	Same as [CA-01]	001
Ud-34 Trace signal 4 output terminal selection	Same as [CC-01]	001
Ud-35 Trace signal 5 input/output selection	00(Input:[Ud-36])/   01(Output:[Ud-37])	00
Ud-36 Trace signal 5 input terminal selection	Same as [CA-01]	001
Ud-37 Trace signal 5 output terminal selection	Same as [CC-01]	001

Call 1(800)985-6929 for Sales Chapter 4

## [Ud-38] to [Ud-60]

Code/Name	Range (unit)	Initial value
Ud-38 Trace signal 6 input/output selection	00 (Input: [Ud-39])/   01 (Output: [Ud-40])	00
Ud-39 Trace signal 6 input terminal selection	Similar to [CA-01]	001
Ud-40 Trace signal 6 output terminal selection	Similar to [CC-01]	001
Ud-41 Trace signal 7 input/output selection	00 (Input: [Ud-42])/   01 (Output: [Ud-43])	00
Ud-42 Trace signal 7 input terminal selection	Similar to [CA-01]	001
Ud-43 Trace signal 7 output terminal selection	Similar to [CC-01]	001
Ud-50 Trace trigger 1 selection	00(Trip)/01(Data 0)/ 02(Data 1)/03(Data 2)/ 04(Data 3)/05(Data 4)/ 06(Data 5)/07(Data 6)/ 08(Data 7)/   09(Signal 0)/10(Signal 1)/   11(Signal 2)/12(Signal 3)/   13(Signal 4)/14(Signal 5)/   15(Signal 6)/16(Signal 7)	00
Ud-51 Trigger 1 activation selection at trace data trigger	00(Action at rising above the trigger level)/ 01(Action at falling below the trigger level)	00
Ud-52 Trigger 1 level setting at trace data trigger	0 to 100(\%)	0
Ud-53 Trigger 1 activation selection at trace signal trigger	00(Action by signal on)/ 01(Action by signal off)	00
Ud-54 Trace trigger 2 selection	00(Trip)/01(Data 0)/ 02(Data 1)/03(Data 2)/ 04(Data 3)/05(Data 4)/ 06(Data 5)/07(Data 6)/ 08(Data 7)/   09(Signal 0)/10(Signal 1)/   11(Signal 2)/12(Signal 3)/   13(Signal 4)/14(Signal 5)/   15(Signal 6)/16(Signal 7)	00
Ud-55 Trigger 2 activation selection at trace data trigger	00(Action at rising above the trigger level)/ 01(Action at falling below the trigger level)	00
Ud-56 Trigger 2 level setting at trace data trigger	0 to 100(\%)	0
Ud-57 Trigger 2 activation selection at trace signal trigger	00(Action by signal on)/   01(Action by signal off)	00
Ud-58 Trigger condition selection	```00(At trace trigger 1 activation)/ 01(At trace trigger 2 activation)/ 02(Trigger-1 OR trigger-2 activation)/ 03(Trigger-1 AND trigger-2 activation)```	00
Ud-59 Trigger point setting	0 to 100(\%)	0
Ud-60   Sampling time setting	$\begin{aligned} & \hline 01(0.2 \mathrm{~ms}) / 02(0.5 \mathrm{~ms}) / \\ & 03(1 \mathrm{~ms}) / 04(2 \mathrm{~ms}) / \\ & 05(5 \mathrm{~ms}) / 06(10 \mathrm{~ms}) / \\ & 07(50 \mathrm{~ms}) / 08(100 \mathrm{~ms}) / \\ & 09(500 \mathrm{~ms}) / 10(1000 \mathrm{~ms}) \\ & \hline \end{aligned}$	03

- For more information, refer to the P1 User's guide and the PC setting software ProDriveNext's instruction manual(NT8001*X).
[UE-01] to [UE-48]
EzSQ (Program operation function)

Code/Name	Range (unit)	Initial   value
UE-01   EzSQ execution cycle	00(1ms)/   $01(2 \mathrm{~ms}: ~ S J 700 / L 700$   compatible)	00
UE-02   EzSQ enable setting	00(Disable)/   01([PRG] terminal)/   02(Always enabled)	00

- EzSQ creates a program with inverter setup software ProdriveNext. To operate the EzSQ function, it is necessary to download the program into the inverter.

Code/Name	Range (unit)	Initial value
UE-10 EzSQ User parameter U(00)	0 to 65535	0
UE-11 EzSQ User parameter U(01)	0 to 65535	0
UE-12 EzSQ User parameter U(02)	0 to 65535	0
UE-13 EzSQ User parameter U(03)	0 to 65535	0
UE-14 EzSQ User parameter U(04)	0 to 65535	0
UE-15 EzSQ User parameter U(05)	0 to 65535	0
UE-16 EzSQ User parameter U(06)	0 to 65535	0
UE-17 EzSQ User parameter U(07)	0 to 65535	0
UE-18 EzSQ User parameter U(08)	0 to 65535	0
UE-19 EzSQ User parameter U(09)	0 to 65535	0
UE-20 EzSQ User parameter U(10)	0 to 65535	0
UE-21 EzSQ User parameter U(11)	0 to 65535	0
UE-22 EzSQ User parameter U(12)	0 to 65535	0
UE-23 EzSQ User parameter U(13)	0 to 65535	0
UE-24 EzSQ User parameter U(14)	0 to 65535	0
UE-25 EzSQ User parameter U(15)	0 to 65535	0
UE-26 EzSQ User parameter U(16)	0 to 65535	0
UE-27 EzSQ User parameter U(17)	0 to 65535	0
UE-28 EzSQ User parameter U(18)	0 to 65535	0
UE-29 EzSQ User parameter U(19)	0 to 65535	0
UE-30 EzSQ User parameter U(20)	0 to 65535	0
UE-31 EzSQ User parameter U(21)	0 to 65535	0
UE-32 EzSQ User parameter U(22)	0 to 65535	0
UE-33 EzSQ User parameter U(23)	0 to 65535	0
UE-34 EzSQ User parameter U(24)	0 to 65535	0
UE-35 EzSQ User parameter U(25)	0 to 65535	0
UE-36 EzSQ User parameter U(26)	0 to 65535	0
UE-37 EzSQ User parameter U(27)	0 to 65535	0
UE-38 EzSQ User parameter U(28)	0 to 65535	0
UE-39 EzSQ User parameter U(29)	0 to 65535	0
UE-40 EzSQ User parameter U(30)	0 to 65535	0
UE-41 EzSQ User parameter U(31)	0 to 65535	0
UE-42 EzSQ User parameter U(32)	0 to 65535	0
UE-43 EzSQ User parameter U(33)	0 to 65535	0
UE-44 EzSQ User parameter U(34)	0 to 65535	0
UE-45 EzSQ User parameter U(35)	0 to 65535	0
UE-46 EzSQ User parameter U(36)	0 to 65535	0
UE-47 EzSQ User parameter U(37)	0 to 65535	0
UE-48 EzSQ User parameter U(38)	0 to 65535	0

Call 1(800)985-6929 for Sales Chapter 4

## [UE-49] to [UE-73][UF-02] to [UF-32]

Code/Name	Range   (unit)	Initial   value
UE-49 EzSQ User parameter U(39)	0 to 65535	0
UE-50 EzSQ User parameter U(40)	0 to 65535	0
UE-51 EzSQ User parameter U(41)	0 to 65535	0
UE-52 EzSQ User parameter U(42)	0 to 65535	0
UE-53 EzSQ User parameter U(43)	0 to 65535	0
UE-54 EzSQ User parameter U(44)	0 to 65535	0
UE-55 EzSQ User parameter U(45)	0 to 65535	0
UE-56 EzSQ User parameter U(46)	0 to 65535	0
UE-57 EzSQ User parameter U(47)	0 to 65535	0
UE-58 EzSQ User parameter U(48)	0 to 65535	0
UE-59 EzSQ User parameter U(49)	0 to 65535	0
UE-60 EzSQ User parameter U(50)	0 to 65535	0
UE-61 EzSQ User parameter U(51)	0 to 65535	0
UE-62 EzSQ User parameter U(52)	0 to 65535	0
UE-63 EzSQ User parameter U(53)	0 to 65535	0
UE-64 EzSQ User parameter U(54)	0 to 65535	0
UE-65 EzSQ User parameter U(55)	0 to 65535	0
UE-66 EzSQ User parameter U(56)	0 to 65535	0
UE-67 EzSQ User parameter U(57)	0 to 65535	0
UE-68 EzSQ User parameter U(58)	0 to 65535	0
UE-69 EzSQ User parameter U(59)	0 to 65535	0
UE-70 EzSQ User parameter U(60)	0 to 65535	0
UE-71 EzSQ User parameter U(61)	0 to 65535	0
UE-72 EzSQ User parameter U(62)	0 to 65535	0
UE-73 EzSQ User parameter U(63)	0 to 65535	0


Number	Unit
00	Non
01	\%
02	A
03	Hz
04	V
05	kW
06	W
07	hr
08	S
09	kHz
10	ohm
11	mA
12	ms
13	P
14	kgm2
15	pls
16	mH
17	Vdc
18	${ }^{\circ} \mathrm{C}$
19	kWh
20	mF
21	$\mathrm{mVs} / \mathrm{rad}$
22	Nm
23	min -1
24	$\mathrm{m} / \mathrm{s}$
25	$\mathrm{m} / \mathrm{min}$
26	$\mathrm{m} / \mathrm{h}$
27	$\mathrm{ft} / \mathrm{s}$
28	$\mathrm{ft} / \mathrm{min}$
29	$\mathrm{ft} / \mathrm{h}$
30	m


Number	Unit
31	cm
32	${ }^{\circ} \mathrm{F}$
33	$\mathrm{I} / \mathrm{s}$
34	$\mathrm{I} / \mathrm{min}$
35	$\mathrm{l} / \mathrm{h}$
36	$\mathrm{~m} 3 / \mathrm{s}$
37	$\mathrm{~m} 3 / \mathrm{min}$
38	$\mathrm{~m} 3 / \mathrm{h}$
39	$\mathrm{~kg} / \mathrm{s}$
40	$\mathrm{~kg} / \mathrm{min}$
41	$\mathrm{~kg} / \mathrm{h}$
42	$\mathrm{t} / \mathrm{min}$
43	$\mathrm{t} / \mathrm{h}$
44	$\mathrm{gal} / \mathrm{s}$
45	$\mathrm{gal} / \mathrm{min}$
46	$\mathrm{gal} / \mathrm{h}$
47	$\mathrm{ft} 3 / \mathrm{s}$
48	$\mathrm{ft} 3 / \mathrm{min}$
49	$\mathrm{ft} 3 / \mathrm{h}$
50	$\mathrm{lb} / \mathrm{s}$
51	$\mathrm{lb} / \mathrm{min}$
52	$\mathrm{lb} / \mathrm{h}$
53	mbar
54	bar
55	Pa
56	kPa
57	PSI
58	mm

- EzSQ up to 16 bits data can be set.

Code/Name	Range (unit)	Initial   value
UF-02 EzSQ User parameter UL(00)	-2147483647   to 2147483647	0
UF-04 EzSQ User parameter UL(01)	-2147483647   to 2147483647	0
UF-06 EzSQ User parameter UL(02)	-2147483647   to 2147483647	0
UF-08 EzSQ User parameter UL(03)	-2147483647   to 2147483647	0
UF-10 EzSQ User parameter UL(04)	-2147483647   to 2147483647	0
UF-12 EzSQ User parameter UL(05)	-2147483647   to 2147483647	0
UF-14 EzSQ User parameter UL(06)	-2147483647   to 2147483647	0
UF-16 EzSQ User parameter UL(07)	-2147483647   to 2147483647	0
UF-18 EzSQ User parameter UL(08)	-2147483647   to 2147483647	0
UF-20 EzSQ User parameter UL(09)	-2147483647   to 2147483647	0
UF-22 EzSQ User parameter UL(10)	-2147483647   to 2147483647	0
UF-24 EzSQ User parameter UL(11)	-2147483647   to 2147483647	0
UF-26 EzSQ User parameter UL(12)	-2147483647   to 2147483647	0
UF-28 EzSQ User parameter UL(13)	-2147483647   to 2147483647	0
UF-30 EzSQ User parameter UL(14)	-2147483647   to 2147483647	0
UF-32 EzSQ User parameter UL(15)	-2147483647   to 2147483647	0

- EzSQ up to 32 bits data can be set.


## Chapter 5 FAQ/Troubleshooting

### 5.1 Error events

Next are the descriptions of the basic errors that may occur. For more information, refer to the user's guide.

Trip information details screen
■Trip event screen


The error code (E001 as example) is explained further ahead.
With the $\boldsymbol{V}$ key, you can scroll the screen.
For more information, refer to the user's guide.

Statuses at which the trip event may have happened
State 1: Inverter operation status State 2: LAD(Accel/Decel) operation status State 3: Inverter control status State 4: Motor drive limit status State 5: Special feature operation status
-Action when an error occurs

Code	Details	Corrective actions	Related parameter
E001	By the load and the operating conditions, overcurrent has occurred.	- If the acceleration is fast, increase the acceleration time.	[AC120]
		- Use the overcurrent suppression function.	[bA120]
		- Use the overload restriction function.	[bA122]
		- Use the overcurrent retry function.	[bb-22]
		- In order to stabilize the control, Try auto-tuning for motor constants.	[HA-01]
$\begin{aligned} & \text { E005 } \\ & \text { E039 } \end{aligned}$	By the load and the operating conditions, current has increased.	- If the acceleration is fast, increase the acceleration time.	[AC120]
		- Use the overload restriction function.	[bA122]
		- If the motor sound is abnormal, in order to stabilize the control, adjust the motor constant by trying auto-tuning.	[HA-01]
E006	Braking resistor use is limited.	- If the deceleration is fast, increase the deceleration time.	[AC122]
		- Reselection of the braking resistor is necessary.	[bA-60]
E007	Internal voltage has increased Insufficient capacity of the inverter.	- If the deceleration is fast, increase the deceleration time.	[AC122]
		- Use the overvoltage suppression functions.	[bA140][bA146]
		- Use the overvoltage retry function.	[bb-23]
		- Use the regenerative braking option.	-
$\begin{aligned} & \text { E008 } \\ & \text { E011 *1) } \end{aligned}$	Main CPU abnormality.	- Carry out counter measures for the inverter noise.	-
		- If it occurs consecutively, there is a possibility of inverter failure.	-
E009	Main circuit supply has drop.	- To disable the under-voltage error, change setting.	[bb-27]
		- Use the under-voltage retry function	[bb-21]
$\begin{gathered} \mathrm{E} 010 \\ \left.{ }^{*} 1\right) \end{gathered}$	Current detector abnormality.	- Carry out counter measures for the inverter noise	-
		- If it occurs consecutively, there is a possibility of inverter failure, and parts replacement might be required.	-
E012	Input terminal 033[EXT] is ON.	- Check the signal status of the input terminal	[dA-51]
		- Check if there are no operations by communication or EzSQ program.	-
E013	While the input yerminal 034[USP] was ON and the RUN command is input state, the main power supply was turned ON.	- Make sure that an RUN command is not introduced at the time of turning ON the inverter	[dA-51]
$\begin{gathered} \text { E014 } \\ * 1) \end{gathered}$	Ground fault is detected at main power supply turned ON.	Check insulation deterioration and ground fault such as motor and wiring.	-
E015	The main power supply voltage has been continuously above the limit.	- Review the power circumstances, such as the power supply capacity.	[dA-40]
E016	The control circuit power source was off due to instantaneous power failure.	- If avoiding this trip is required, use the power loss retry function.	[bb-20]

*1) As a major failure error, the output terminal function [MJA]
turns ON. And these errors could not be canceled with input
Cerminif $\{8808 f$ ) $985-6929$ for Sales

Code	Details	Corrective actions	Related parameter
E019 *)	Abnormality in temperature detector circuit.	- Carry out counter measures for the inverter noise	-
		- If it occurs consecutively, there is a possibility of inverter failure.	-
E020 * 1)	The internal temperature of the inverter is rising because the rotational speed of the cooling fan is reduced and the cooling is insufficient.	- The cooling fan is reached its lifetime, and it is needed replacement.	-
		- Lower the carrier frequency.	[bb101]
E021	Internal temperature has increased.	- Requires a review of the installation circumstances.	-
		- Due to clogging or life of the cooling fan,The cooling fan may not be operating normally.	-
		- Lower the carrier frequency.	[bb101]
E024	Disconnection of the wiring in the supply side has occurred.	- Check the fastening of the input wiring with screws.	-
		- Check that the 3 phases are correctly inserted.	-
E030	Sudden increase of current.	- Verify if a ground fault or a cable disconnection/rupture has occurred at the output wiring.(possible short circuit)	-
		- Check that the motor is not locked.	-
E034	Disconnection of the wiring in the motor side has occurred.	- Check the output wiring disconnection, motor insulation failure, ...etc.	-
		- Check that the 3 phases are correctly connected.	-
E035	Abnormal motor temperature.	- Improve the motor cooling circumstances.	-
		- Use the overload restriction function.	[bA122]
	Thermistor abnormality.	- Check if the thermistor is damaged.	-
		- Check the thermistor settings.	[Cb-40]
E036	Brake abnormality.	- Check if the brake is damaged and if the wiring for the [BOK] signal is disconnected.	[dA-51]
		- Check the brake waiting time.	[AF134][AF141]
E038	Increase of current during slow speed operation.	- If torque is needed during slow speed, a review of the inverter capacity is necessary.	-
E040	Keypad disconnection error	- Check for the disconnection of the keypad VOP from the inverter.	[UA-20]
		- Noise counter-measures are necessary	-
E041	RS485 communication error	- Noise counter-measures are necessary	-
		- Check the communication setting	$\begin{aligned} & {[\mathrm{CF}-01] \text { to }} \\ & {[\mathrm{CF}-08]} \end{aligned}$
E042	RTC error	- Battery replacement for the keypad VOP is necessary	-
E043 to E045 E050 to E059	There is an error in the EzSQ program.	- For more information, refer to P1 Easy-Sequence Function(EzSQ) Programming Guide NT252*X.	-
E060 to E089	There is an error in the option.	- For more information, refer to each option in user's guide.	-
$\begin{aligned} & \text { 1:E090 to E093 } \\ & \text { 2:E094 to E097 } \end{aligned}$	1:There is an error in the STO path 2:There is an error in the P1-FS.	- For more information, refer P1 functional safety guide NT2512*X. Or P1-FS Functional Safety Option Safety Function Guide NT2582*X	-
E100	A disconnection error of the signal line occurred at P1-FB	- This error related to the feedback option. For details, refer to P1-FB User's Guide NT253*X	-
E104	The current position has exceeded the setting range of [AE-52] and [AE-54] in position control.	- These are errors related to feedback control.   Review the operating conditions, check the wiring, encoder settings and other related parameter settings again.   Also, refer to related items in P1 User's Guide NT251*X. When using P1-FB, refer to P1-FB User's Guide NT253*X.	$\begin{aligned} & {[A E-52]} \\ & {[A E-54]} \end{aligned}$
E105	The speed deviation exceeded "[bb-83] Speed deviation error detection level".		[bb-82]   [bb-83]
E106	Position deviation exceeded "[bb-86] Position deviation error detection level".		$\begin{aligned} & {[b b-86]} \\ & {[b b-87]} \end{aligned}$
E107	The speed has exceeded "[bb-80] Over-speed detection level".		$\begin{aligned} & {[b b-80]} \\ & {[b b-81]} \end{aligned}$
E110	A contactor error has occurred	- Re-check [AF120] to [AF123] and wiring etc. of external contactor.	$\begin{aligned} & \hline \text { [AF120] to } \\ & \text { [AF123] } \\ & \hline \end{aligned}$
E112	This error related to the feedback option	- For details, refer to P1-FB User's Guide NT253*X	-
E120	This is a error when starting up PID function.	- Check the wiring and check the parameter settings related to PID soft start such as [AH-76].	$\begin{aligned} & \hline \text { [AH-75] to } \\ & {[\mathrm{AH}-82]} \\ & \hline \end{aligned}$

${ }^{*}$ ) As a major failure error, the output terminal function [MJA] turns ON. And these errors could not be canceled with input terminal 028[RS]. However the EO20 error can be reset after the inverter tempratuer drops down.
※For others errors not shown above, refer to the P1 user's

## Warning events

※Regarding the warnings, refer to the user's guide. Fixing the parameter details shown in the panel screen may cancel the warning.

### 5.2 Confirming the status

■Frequently asked questions - FAQ (simplified edition) Details of display

(A) Main operation status

Display	Description
RUN FW	While in forward operation.
$\begin{gathered} \text { RUN } \\ \text { RV } \end{gathered}$	While in reverse operation.
$\begin{aligned} & \text { RUN } \\ & \mathrm{OHz} \end{aligned}$	While output operation is 0 Hz . Also displayed by input terminal 030[DB], 065[SON], 066[FOC].There are parameters that can not be changed during operation.
TRIP	Displays the trip status.   The resetable error is released by the reset operation.
WARN	When a conflict in the setting happens. For details, refer P1 User's Guide.
$\begin{aligned} & \text { STOP } \\ & \text { (red) } \end{aligned}$	This is a display when an RUN command has been input but a forced stop has been performed by some function.   - The RUN command was input when the frequency reference value is 0 Hz .   - The inverter stopped by the Keypad STOP key when the RUN command is other than the Keypad.   - The inverter stopped by the Instantaneous power failure non-stop function.   - The inverter stopped by the shutoff terminal function [RS], [FRS], etc, when the RUN command is other than the Keypad.   At this time, the RUN lamp blinks.
$\begin{gathered} \text { STOP } \\ \text { (white) } \end{gathered}$	While stopped, in absence of RUN command or if frequency reference is OHz .

(Tips)

- If STOP(in red),
$\Rightarrow$ Displayed in ( $F$ ): if the reference frequency is 0.00 Hz , make sure that the frequency reference has been inputted.
$\Rightarrow$ For example; if it is being driven by the input terminal $001[F W]$ and then stopped with the stop key, inverter will not start again the operation unless the input terminal 001[FW] turns off and on again.
$\Rightarrow$ It does not operate when the input terminal $028[\mathrm{RS}]$ or 032[FRS] or Functional safty STO terminal which is the Shutdown function is ON.


## (B) Warning status

No.	Display	Description
1	LIM	While:   - Overload restriction.   - Torque limiting.   - Overcurrent suppression.   - Overvoltage suppression.   - Upper or lower frequency limited.   - Jump frequency limited.   - minimum frequency limited.   Details can be confirmed in [dC-37].
2	ALT	If displays the following functions:   - Overload warning.   - Motor thermal warning.   - Inverter thermal warning.   - Motor heat warning.   Details can be confirmed in [dC-38].
3	RETRY	While waiting for retry or restart functions.   Details can be confirmed in [dC-39].
4	NRDY	While inverter is in a state unfit to operate, even if a RUN command is issued.   - Main power undervoltage.   - Operating only with 24 V supply.   - Resetting.   - Run command is not possible when the input terminal 101[REN](RUN enable) is assigned and it is OFF.   Details can be confirmed in [dC-40].
5	FAN	Cooling-fan life warning is issued. Also, the output terminal 030 [WAF] turned ON.
6	C	Capacitor life warning is issued. Also, the output terminal 029[WAC] turned ON.
7	F/C	When both Capacitor and Cooling-fan life warnings are issued.
8	(None)	Different statuses from those shown above.

(Tips)

- LIM and ALT are indicated when current and internal voltage has risen. Review things such as the load if this error happens too often.
- Above icons are indicated when cooling-fan and smoothing capacitor lifespan has reached to the end.
- When [multi monitor],[While screen] or [Huge monitor], press the Up key to see the details of the warning.


## (E)Panel's RUN key function

No.	Display	Description
1	oFW	Forward operation from panel's RUN key.
2	oRV	Reverse operation from panel's RUN key.
3	$>$ FW	By 023 [F-OP] Force operation or the keypad   VOP or etc. functions, Keypad RUN key is   forcibly enabled (>FW=Forward, $>$ RV=Reverse)
4	$>$ RV	Different operation (other than RUN).   5

(Tips)

- When the RUN key on the keypad is enabled, oFW etc. are displayed on (E).
- Operating from the operation panel, first review the [AA111] RUN command input source selection. Or Check [dC-10] (RUN command input source monitor).

Details of display (continue)

<a> Power supply status

Number	Display	Description
1	(None)	Main and control power is supplied.
2	CTRL	Control supply is connected.
3	24 V	Only P+/P- 24V supply is connected.

(Tips)

- Displays the status of the supply. If CTRL or 24 V is displayed means that is in a state where there is not a main power source plugged and cannot operate. Check the supply.


## <b> SET function status

Number	Display	Description
1	M1	When input terminal 024[SET] is not   assigned or is assigned but in OFF   state (1st-motor is enabled).
2	M2	Input terminal 024[SET] is assigned   and in ON state (2nd-motor is   enabled).

- When the input terminal 024[SET] is not being used, M1 is displayed.
If the centre character of the parameter is " - " (such as [AC-01]) or " 1 "( such as [AA111]) that parameter is valid, if it is " 2 " (such as [AA211]), it will be ignored. If the 2 nd setting is valid, Output terminal 012[SETM] 2nd control selected becomes ON.
<c> Parameter display

Number	Display	Description
1	(None)	Display all modes.
2	UTL	Individual function display mode.
3	USR	User's settings display mode.
4	CMP	Data comparator display mode.
5	MON	Only monitor display mode.

(Tips)

- Is displayed if it operating under a display limiting function. Change the setting of [UA-10] in the case that the parameters are not being displayed.


## <d> Monitor screen number <br> (Tips)

- Each screen displayed has a number. When contacting to us, make reference to the screens with its number.


## (e) Functional safety

(Tips)

- If there is a display, will be shut off.
※Refer "■Functional safety STO terminals" of Chapter 2.11
"Control circuit wiring section"
<f> Control mode

Number	Display	Description
1	(None)	Speed control mode.
2	TRQ	Torque control mode.
3	POS	Position control mode.

(Tips)
• Displays the operation control mode.
<g> EzSQ mode

Number	Display	Description
1	(None)	EzSQ not selected.
2	Ez_S	EzSQ programme not running.
3	Ez_R	EzSQ programme running.

(Tips)

- Can check if EzSQ function is active.
<h> Display of special function status

No.	Indication	Description
h1	(None)	The inverter is not in the special status.
h2	AUT	The inverter is auto-tuning.
h3	SIM	The inverter is in the simulation mode.

(Tips)

- If the function is displayed, it means that the inverter is in the special state.
For more information, refer to the user's guide.


### 5.3 Possible errors and solutions

$\rangle$ If the corrective action does not solve the problem, refer to the user's guide where there are more detailed descriptions. Or please consult inquiry desk described "Contact information" on the page S-3.
Screen is not
displayed even
when POWER Led
is illuminated
Cannot change
settings

In operation the
circuit breaker gets

activated $\quad$\begin{tabular}{l}

- Lower the carrier frequency [bb101] <br>
- Increase the sensitivity current of the earth leakage breaker <br>
or replace it with a high sensitivity current. <br>
- Enabling the built-in EMC filter will increase the leakage <br>
current. If necessary, select an appropriate earth leakage <br>
circuit breaker or consider turning off the EMC filter.
\end{tabular}


## Chapter 6

## Inspection and Maintenance

## $\triangle$ <br> Read this before performing any inspection or maintenance!

## There is risk of electric shock!

- Before an inspection the supply power must to be cut off, and then wait at least 10 minutes( ${ }^{*} 1$ ) or 15 minutes(*2) before proceeding.
(Make sure that the charge lamp in the inverter is off. Furthermore, measure the voltage between the $P$ and $N$ terminals and make sure that the voltage is less than 45 V )
*1) For models P1-00044-L~P1-01240-L (P1-004L~ P1-220L) and P1-00041-H~00620-H (P1-007H~ P1-220H)
*2) For models P1-01530-L~P1-02950-L (P1-300L~ P1-550L) and P1-00770-H~P1-05200-H (P1-300H ~P1-2200H)


### 6.1 Inspection and maintenance notes

### 6.1.1 Daily inspection

Check and confirm for the following abnormalities while the inverter is operating:

No.	Details	$\checkmark$
1	Motor operates as per settings	$\square$
2	No abnormalities in the environment	$\square$
3	Cooling-system running normally	$\square$
4	Abnormal vibration or noise	$\square$
5	Discolouration and superheating	$\square$
6	Unusual odour	$\square$

While operating, check the inverter input voltage using a multimeter or a similar tool to confirm:

No.	Details	$\checkmark$
1	Voltage supply fluctuation	$\square$
2	Line-to-line voltage balance	$\square$

### 6.1.2 Regarding the functional safety

The contents related to the functional safety, refer to the separate "SJ-P1 Functional Safety Guide" (NT 2512*X)

- Other than the designated person, do not perform any maintenance, inspection or component replacement. (Before starting to operate, remove any wristwatch or metal accessories such as bracelets, and use always isolated tools)


### 6.1.3 Cleaning

Keep the inverter in a clean condition.

No.	Details	$\checkmark$
1	When cleaning the inverter, use a soft   cloth soaked in neutral detergent to gently   wipe up the dirtied parts.	$\square$
2	Do not use solvents like acetone, benzene,   toluene or alcohol to clean the inverter, as   it can melt its surface or peel off the   coating.	$\square$
3	For the display of the panel do not use   detergent or alcohol to clean it.	$\square$

### 6.1.4 Periodic inspection

Check the parts that are only accessible while the inverter is stopped. The periodic inspection is a vital point that has to be carried out, for any periodic inspection, please contact your Hitachi inverter distributor.

No.	Details	$\checkmark$
1	Check for abnormalities in cooling system   $\cdot$ Heat sink cleaning, etc.	$\square$
2	Check the fastening and tighten   - By the effects of oscillations, thermal   expansion, etc..., the screws and bolts   may become loose, proceed to tighten   after confirming.	$\square$
3	Check that there is no damage or   corrosion to the conductors and insulators	$\square$
4	Measurement of the dielectric breakdown   voltage of insulators	$\square$
5	Check and replacement of cooling-fan,   smoothing capacitator and relay in main   circuit.	$\square$

### 6.2 Daily and periodic inspections

Inspected part	Inspection entry	Details of inspection	Inspection cycle			Inspection method	Criterion	Tester device
			Daily	Every				
				$\begin{array}{\|c\|} \hline 1 \\ \text { year } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2 \\ \text { years } \\ \hline \end{array}$			
General	Surrounding environment	Check the ambient temperature, level of humidity, dust, ... etc.	$\bigcirc$			Refer to the installation guide.	Ambient temperature, level of humidity are withing the range. No frozen part. No condensation.	Thermometer Hygrometer Data logger
	Whole inverter	Check abnormal vibrations or noises	$\bigcirc$			Check visually and auditorily.	Without abnormalities	
	Power supply voltage	Check that the main circuit voltage is normal.	$\bigcirc$			Measure the line-to-line voltage of the inverter main circuit terminals R,S and T.	Within the AC voltage permissible variation.	Multimeter, Digital multimeter Meter
Main circuit	General check	(1)Check the resistance between the main circuit and the ground terminals.		$\bigcirc$		Remove the inverter main circuit terminals input/output wiring and the control terminal board, and remove the jumper for the internal filter, after that, shortcircuit the terminals R,S,T,U,V,W,P,PD,N,RB,RO,TO, and measure between this shortcircuit and the ground.	Resistance no less than $5 \mathrm{M} \Omega$.	DC 500V class Ohmmeter (megger ${ }^{\circledR}$ )
		(2)Check looseness in fastened parts		$\bigcirc$		Confirm tighten of fasteners.	Without abnormalities	
		(3)Check for overheating traces.		$\bigcirc$		Check visually.	Without abnormalities	
	Conductor and cables	(1)Check for straining in conductors		$\bigcirc$		Check visually.	Without abnormalities	
		(2)Check for cable coating damage		$\bigcirc$				
	Terminal block	Check for any damage.		$\bigcirc$		Check visually.	Without abnormalities	
	Inverter and converter circuits (Including resistors)	Check the resistance between all the terminals			$\bigcirc$	Remove the inverter main circuit terminal wiring, and measure the following:   - Resistance between terminals RST and PN.   - Resistance between terminals UVW and PN	Refer the " 6.5 Method of checking the inverter/converter circuits". The inverter, capacitor and thyristor lifespan before replacing the componentes is of $10^{6}$ start/stop cycles *3)	Analog multimeter
		(1)Check for capacitor fluid leakage	$\bigcirc$				That there are no abnormalities	
	Smoothing capacitor	(2)Check that the relief valve does not swells or protudes.		$\bigcirc$		Check visually.	Estimated number life span before exchanging component:   10 years $* 1) * 3) * 4$	Capacitance meter
	Relay	(1)No chatter sound while operating		$\bigcirc$		Check auditorily.	That there are no abnormalities.	
		(2)Check contacts for damage		$\bigcirc$		Check visually.	That there are no abnormalities.	
Control and protection circuits	Operation check	(1) While performing a unit operation of the inverter, check the balance of the output voltage among the individual phases		$\bigcirc$		Measure the voltage between the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ terminals of the inverter main circuit.	Phase-to-phase voltage balance 200V class: within 4V   400V class: within 8 V	Digital multimeter Voltmeter
		(2)Carry out a sequential protection test, and check the protective and display circuits for any abnormality		$\bigcirc$		Simulate a shortcircuit or open of the inverter output protection circuit.	An error must be detected according to the sequence.	Ammeter
Cooling system	Cooling-fan	(1) Check for abnormal vibrations or noises	$\bigcirc$			Turn by hand while electricity is not being supplied	Smooth operation without abnomalities.   Replace every: 10 years *2) *3) *5)	
		(2)Check for loose joints		$\bigcirc$		Check visually.		
	Heat sink	Check for obstructions/clogging.		$\bigcirc$		Check visually.	That there are not obstructions.	
Display	Display	(1) Check if the charge lamp LED and the Keypad' s LEDs and LCD light up	$\bigcirc$			Check visually.	Confirm they light up	
		(2)Display cleaning		$\bigcirc$		With cleaning rag.		
	Meter	Check that Indicated values are normal.	-			Check the meter readings on the panel.	Regulation and control value are satisfactory.	Voltmeter   Ammeter Etc.
Motor	General	(1)Check abnormal vibrations or noises	$\bigcirc$			Check visually,auditorily, and by touch	Without abnormalities	
		(2)Check that there is no odour.	$\bigcirc$			Check for abnormal superheating, damages an so on.	Without abnormalities	
	Insulation resistance	Check the resistance between the main circuit and the ground terminals.	*6)			Detach the U,V,W terminals from the inverter main circuit, and shortcircuit the motor wiring, mesure with the Megger ${ }^{\circledR}$ between the motor wiring and ground terminal.	No less than $5 \mathrm{M} \Omega$.	DC 500V class Ohmmeter (megger ${ }^{\circledR}$ )

*1) The life span of the smoothing capacitor is influenced by the ambient temperature. Refer to [Smoothing capacitor life span curve] for replacing measures.
${ }^{*} 2$ ) The life span of the cooling-fan is influenced by the ambient temperature, the dirt and the change in its environmental conditions. Check these circumstances on the usual inspection.
*3) The estimated time before replacement (Number of years/cycle) and the [Smoothing capacitor life span curve] are based on the design lifespan, not guaranteed.
*4) In the case that the capacitors are replaced after that the storage period of 3 years has expired, before the first use please refer to the aging process under the following conditions:

- First, apply for 1 hour the $80 \%$ of the capacitor rated voltage at ambient temperature
- Then, raise the voltage to $90 \%$, and keep it for 1 more hour.
- Finally, apply for 5 hours the rated voltage at ambient temperature
*5) In the case that the cooling-fan if affected by dust, obstructing it; remove the dust, after that may take 5 to 10 seconds to start again.
*6) Follow the installed motor instructions


### 6.3 Insulation resistance test

- When testing an external circuit with a megger, disconnect all the external circuit cables from the inverter to prevent it from being exposed to the test voltage.
- In the control circuit carry out a conduction test, use a multimeter (with high resistance range), do not use a megger ${ }^{\circledR}$ or buzzer /continuity tester.
- The insulation resistance test of the inverter itself is carried out only at the main circuit, do not perform an insulation resistance test in the control circuit.
- It is recommended the use of a DC500V megger® ${ }^{\circledR}$ for the insulation resistance test.
- Before the main circuit test with a megger, remove the jumper for switching the inverter's internal filter function, and then connect terminals R, S, T, U, V, W, P, PD, N, RB, RO, and TO by wires as shown in the figure below. Subsequently, carry out the test.
- After the test using the megger, remove the wires from terminals $\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{P}, \mathrm{PD}, \mathrm{N}, \mathrm{RB}, \mathrm{RO}$, and TO, and connect the jumper for switching the inverter's internal filter function at the original position.
- Furthermore, depending on the model, the RB terminal may not be present. Please confirm in "2.9 Wiring to the main circuit terminal block".



### 6.4 Dielectric withstand test

- Do not carry out a withstand voltage test for the inverter. The test may damage its internal parts, deteriorating the inverter.


### 6.5 Checking method for inverter/converter

- Using the analog multimeter, you can check if the inverter or converter unit are defective or non-defective.
(Preparation)
(1) Remove the supply $(R, S, T)$ and motor wiring ( $U, V, W$ ), and also the regenerative braking resistor $(P, R B)$.
(2) Prepare the multimeter. (Application measurement range is $1 \Omega$ )
(Checking method)
- Measure and check the current conduction at each of the inverter main circuit terminals $R, S, T, U, V, W, R B, P, N$, by changing the polarity of the multimeter alternately.




### 6.6 Smoothing capacitor life span curve

$※ 80 \%$ of the ND rated current value for continuous drive.

*1)The ambient temperature is considered to be measured around 5 cm of the bottom centre of the inverter (Atmosphere temperature). If the inverter is in an enclosure, it will be the temperature inside the case.
*2) The smoothing capacitor has a limited life because of the chemical reactions occurring inside the capacitor while operating. The capacitor should be replaced after 10 years of use, as a reference standard ( 10 years is not the guaranteed lifespan, but rather, the design lifespan). Note that the smoothing capacitor lifespan will be shortened if the inverter is used at a high ambient temperature or with a heavy load that requires a current beyond the rated current.

### 6.7 Lifespan alarm output

[^3]
### 6.8 Input/output voltage, current and power measurement methods

Standard equipment for measuring input/output voltage, current, and power measurement.


Measured data	Measuring point	Measuring instrument	Remarks	Standard reference values
Input voltage Ein	$\begin{array}{lll} R-S, & S-T, & T-R \\ \left(E_{R}\right), & \left(E_{S}\right), & \left(E_{T}\right) \end{array}$	Moving-iron voltmeter or Rectifier-type voltmeter	Effective value of full waves	$\begin{array}{ll}\text { 200V class: } 200 \sim 240 \mathrm{~V} & 50 / 60 \mathrm{~Hz} \\ \text { 400V class: } 380 \sim 500 \mathrm{~V} & 50 / 60 \mathrm{~Hz}\end{array}$
Input current   IIN	$\begin{array}{lccc} \begin{array}{l} R, \\ \\ \left(I_{R}\right), \end{array} & S_{1}, & \text { (IS), } & \text { (IT) } \end{array}$	\$ Moving-iron ammeter	Effective value of full waves	If there is unbalance in the input supply $\mathrm{IIN}=\left(l_{R}+l_{S}+I_{T}\right) / 3$
Input power Win	$\begin{array}{lll} \hline R-S, \quad \text { S-T, } \quad \text { T-R } \\ \left(W_{11}\right)+\left(W_{12}\right)+\left(W_{13}\right) \\ \hline \end{array}$	EElectrodynamometer-type wattmeter	Effective value of full waves	Three-wattmeter method
Input power factor Pfin	Is calculated from the measured values of the input voltage ( $\mathrm{E}_{\mathrm{IN}}$ ), input current ( $\mathrm{I}_{\text {IN }}$ ) and supply power ( $\mathrm{W}_{\text {IN }}$ )$\mathrm{Pf}_{\mathrm{IN}}=\frac{\mathrm{W}_{\mathrm{IN}}}{\sqrt{3 \times \mathrm{F}_{\mathrm{IN}} \times \mathrm{I}_{\mathrm{IN}}}} \times 100$			
Output voltage Eout	$\begin{array}{lll} U-V, & V-W, & W-U \\ \left(E_{U}\right), & \left(E_{v}\right), & \left(E_{w}\right) \end{array}$	\$ Moving-iron voltmeter or $\qquad$ Rectifier-type voltmeter	Effective value of fundamental wave	
Output current lout	U, V, W current (Iu), (Iv), (Iw)	\$ Moving-iron ammeter	Effective value of full waves	
Output power Wout	$\begin{aligned} & \text { U-V, V-W } \\ & \left(W_{01}\right)+\left(W_{02}\right) \end{aligned}$	己Electrodynamometer-type wattmeter	Effective value of full waves	Two-wattmeter method (Otherwise the three-wattmeter method)
Output   power   factor   Pfout	Is calculated from the measured values of the output voltage (E Eout), output current (lout) and output power (Wout).$\text { Pfout }_{\text {out }}=\frac{\text { Wout }^{\sqrt{3} \times \text { Fout } \times \text { Iout }}}{} \times 100$			



When measuring...

1. To measure the output voltage, use an instrument that reads the effective value of the fundamental wave. To measure the current or the power, use an instrument that reads the effective value of full waves.
2. Since the inverter output waveform is controlled by PWM, it has a large margin of error, especially at low frequencies. In many cases, general testers may be defective for the measurement, because of the adverse effects of the noise.

## Chapter 7 Specifications

### 7.1 200V class specifications

Model nameP1-*****-L				00044	00080	00104	00156	00228	00330	00460	00600	00800	00930	01240	01530	01850	02290	02950
ND standard capacityP1-***L				004	007	015	022	037	055	075	110	150	185	220	300	370	450	550
Applicable motor capacity (4 poles)(kW)			VLD	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
			LD	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
			ND	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
Rated output current(A) *1)			VLD	4.4	8.0	10.4	15.6	22.8	33.0	46.0	60.0	80.0	93.0	124	153	185	229	295
			LD	3.7	6.3	9.4	12.0	19.6	30.0	40.0	56.0	73.0	85.0	113	140	169	210	270
			ND	3.2	5.0	8.0	11.0	17.5	25.0	32.0	46.0	64.0	76.0	95.0	122	146	182	220
$\begin{aligned} & \stackrel{3}{3} \\ & \stackrel{2}{7} \\ & 0 \end{aligned}$	Overload current rating		VLD	$110 \% 60 \mathrm{sec} / 120 \% 3 \mathrm{sec}$														
			LD	120\% 60sec / 150\% 3sec														
			ND	150\% 60sec / 200\% 3sec														
	Rated output voltage			Three-phase(3 wire)200 to 240 V (Corresponding to the incoming voltage)														
	Rated capacity (kVA)	200 V	VLD	1.5	2.8	3.6	5.4	7.9	11.4	15.9	20.8	27.7	32.2	43.0	53.0	64.1	79.3	102.2
			LD	1.3	2.2	3.3	4.2	6.8	10.4	13.9	19.4	25.3	29.4	39.1	48.5	58.5	72.7	93.5
			ND	1.1	1.7	2.8	3.8	6.1	8.7	11.1	15.9	22.2	26.3	32.9	42.3	50.6	63.0	76.2
		240 V	VLD	1.8	3.3	4.3	6.5	9.5	13.7	19.1	24.9	33.3	38.7	51.5	63.6	76.9	95.2	122.6
			LD	1.5	2.6	3.9	5.0	8.1	12.5	16.6	23.3	30.3	35.3	47.0	58.2	70.3	87.3	112.2
			ND	1.3	2.1	3.3	4.6	7.3	10.4	13.3	19.1	26.6	31.6	39.5	50.7	60.7	75.7	91.5
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\underline{0}} \end{aligned}$	Rated input current(A) *2)		VLD	5.2	9.5	12.4	18.6	27.1	39.3	54.8	71.4	95.2	110.7	147.6	182.1	220.2	272.6	351.2
			LD	4.4	7.5	11.2	14.3	23.3	35.7	47.6	66.7	86.9	101.2	134.5	166.7	201.2	250.0	321.4
			ND	3.8	6.0	9.5	13.1	20.8	29.8	38.1	54.8	76.2	90.5	113.1	145.2	173.8	216.7	261.9
	Rated input   AC voltage *3)			Control power supply : Single-phase supply 200 to 240 V (Permissible AC voltage 170 to 264) , 50 Hz (allowable variation range: $47.5-52.5 \mathrm{~Hz}) / 60 \mathrm{~Hz}$ (allowable variation range: $57-63 \mathrm{~Hz}$ )														
				Main circuit power supply: Three-phase( 3 wire) 200 to 240 V (Permissible AC voltage 170 to 264) , 50 Hz (allowable variation range: $47.5-52.5 \mathrm{~Hz}) / 60 \mathrm{~Hz}$ (allowable variation range: $57-63 \mathrm{~Hz}$ )														
	Power supply capacity $(\mathrm{kVA}) * 4)$		VLD	2.0	3.6	4.7	7.1	10.3	15.0	20.9	27.2	36.3	42.2	56.3	69.4	83.9	103.9	133.8
			LD	1.7	2.9	4.3	5.4	8.9	13.6	18.1	25.4	33.1	38.6	51.3	63.5	76.7	95.3	122.5
			ND	1.5	2.3	3.6	5.0	7.9	11.3	14.5	20.9	29.0	34.5	43.1	55.3	66.2	82.6	99.8
Carrier frequency variation *5)			VLD	0.5 to 10.0 kHz														
			LD	0.5 to 12.0 kHz														
			ND	0.5 to 16.0 kHz														
Motor start torque *6)				200\%/0.3Hz														
	Regenerative			Internal BRD circuit (external discharge resistor value)											External regenerative braking unit			
	Minimum resistancevalue $(\Omega)$			50	50	35	35	35	16	10	10	7.5	7.5	5	-	-	-	-
	H (height)(mm)			255	255	255	255	255	260	260	260	390	390	390	540	550	550	700
	W(width)(mm)			150	150	150	150	150	210	210	210	245	245	245	300	390	390	480
	D(Depth)(mm)			140	140	140	140	140	170	170	170	190	190	190	195	250	250	250
Protective structure				IP20 - UL Open Type														
Aprox. weight (kg)				3	3	3	3	3	6	6	6	10	10	10	22	33	33	47

*1) Some models require current derating depending on the carrier frequency setting and ambient temperature. For details, please refer to "20.4 Current Delating Table" of P1 user 's guide.
*2) The rated input current is the value when the drive is operated in the rated output current. The value of the impedance at the supply side changes due to the wiring, breaker, input reactor, etc.
In addition, the input current on the specification nameplate is a UL-certified current
*3) Following are for Low Voltage Directive (LVD) compliant

- Pollution degree 2
- Overvoltage category 3
*4) The power supply capacity is the value of the rated output current at 220 V . The value of the impedance at the supply side changes due to the wiring, breaker, input reactor, etc.
*5) The setting range of carrier frequency [bb101] / [bb201] is limited according to the [Ub-03] setting(load type selection).
It is recommended to set the carrier frequency settings [bb101]/[bb201] equal or greater than the (maximum output frequency $\times 10$ ) Hz . For induction motor $I M$, it is recomended to set the carrier frequency to 2 kHz or more except $\mathrm{V} / \mathrm{f}$ control. For synchronous motor (SM)/Permanent magnet motor (PMM), it is recomended to set the carrier frequency to 8 kHz or more.
*6) The value is specified for the Hitachi standard motor controlled by the sensorless vector control when ND rating.
Torque characteristics may vary by the control system and the use of the motor.
*7) The key height of keypad are exclued from dimensions. When an option is connected, the depth is increased. Refer to the each optional instruction.


### 7.2 400V class specifications

Model nameP1-*****-H			00041	00054	00083	00126	00175	00250	00310	00400	00470	00620	00770	00930	01160	01470	01760	02130	02520	03160	03720	04320	04860	05200
$\begin{gathered} \text { ND standard capacity } \\ \text { P1-***H } \end{gathered}$			007	015	022	037	055	075	110	150	185	220	300	370	450	550	750	900	1100	1320	1600	1850	2000	2200
Applicable   Motor ca-   pacity(kW)   (4poles)		VLD	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	200	220	250
		LD	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	200	220	250
		ND	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	200	220
Rated output current   (A) *1)		VLD	4.1	5.4	8.3	12.6	17.5	25.0	31.0	40.0	47.0	62.0	77.0	93.0	116	147	176	213	252	316	372	432	486	520
		LD	3.1	4.8	6.7	11.1	16.0	22.0	29.0	37.0	43.0	57.0	70.0	85.0	105	135	160	195	230	290	341	395	446	481
		ND	2.5	4.0	5.5	9.2	14.8	19.0	25.0	32.0	39.0	48.0	61.0	75.0	91.0	112	150	180	217	260	310	370	405	450
Overload current rating		VLD	110\% 60sec / 120\% 3sec																					
		LD	120\% 60sec / 150\% 3sec																					
		ND	150\% 60sec / 200\% 3sec																					
$\begin{aligned} & \text { D } \\ & \text { 2 } \\ & 0 \end{aligned}$	Rated output voltage		Three-phase(3 wire)380~500V (Corresponding to the incoming voltage)																					
	400   Rated   capa-   city V   (kVA) 500    V   V	VLD	2.8	3.7	5.8	8.7	12.1	17.3	21.5	27.7	32.6	43.0	53.3	64.4	80.4	101.8	121.9	147.6	174.6	218.9	257.7	299.2	336.7	360.2
		LD	2.1	3.3	4.6	7.7	11.1	15.2	20.1	25.6	29.8	39.5	48.5	58.9	72.7	93.5	110.9	135.1	159.3	200.9	236.2	273.6	308.9	333.2
		ND	1.7	2.8	3.8	6.4	10.3	13.2	17.3	22.2	27.0	33.3	42.3	52.0	63.0	77.6	103.9	124.7	150.3	180.1	214.7	256.3	280.5	311.7
		VLD	3.6	4.7	7.2	10.9	15.2	21.7	26.8	34.6	40.7	53.7	66.7	80.5	100.5	127.3	152.4	184.5	218.2	273.7	322.1	374.1	420.8	450.3
		LD	2.7	4.2	5.8	9.6	13.9	19.1	25.1	32.0	37.2	49.4	60.6	73.6	90.9	116.9	138.6	168.9	199.2	251.1	295.3	342.0	386.2	416.5
		ND	2.2	3.5	4.8	8.0	12.8	16.5	21.7	27.7	33.8	41.6	52.8	65.0	78.8	97.0	129.9	155.9	187.9	225.2	268.4	320.4	350.7	389.7
$\begin{aligned} & \stackrel{~}{\beth} \\ & \end{aligned}$	Rated input current (A)*2)	VLD	4.9	6.4	9.9	15.0	20.8	29.8	36.9	47.6	56.0	73.8	91.7	110.7	138.1	175.0	209.5	253.6	300.03	376.2	442.9	514.3	578.6	619.1
		LD	3.7	5.7	8.0	13.2	19.0	26.2	34.5	44.0	51.2	67.9	83.3	101.2	125.0	160.7	190.5	232.1	273.8	345.2	406.0	470.2	531.0	572.6
		ND	3.0	4.8	6.5	11.0	17.6	22.6	29.8	38.1	46.4	57.1	72.6	89.3	108.3	133.3	178.6	214.3	258.3	309.5	369.1	440.5	482.1	535.7
	Rated input AC voltage *3)		Control power supply: Single-phase supply 380 to 500 V ( Permissible AC voltage 323 to 550V) , 50 Hz (allowable variation range: $47.5-52.5 \mathrm{~Hz}$ )/60Hz (allowable variation range: $57-63 \mathrm{~Hz}$ )																					
			Main circuit power supply: Three-phase( 3 wire) 380 to 500 V ( Permissible AC voltage 323 to 550 ), 50 Hz (allowable variation range: $47.5-52.5 \mathrm{~Hz}) / 60 \mathrm{~Hz}$ (allowable variation range: $57-63 \mathrm{~Hz}$ )																					
	Power supply capacity (kVA) *4)*9)	VLD	3.7	4.9	7.5	11.4	15.9	22.7	28.1	36.3	42.6	56.3	69.9	84.4	105.2	133.4	159.7	193.2	228.6	286.7	337.5	391.9	440.9	471.8
		LD	2.8	4.4	6.1	10.1	14.5	20.0	26.3	33.6	39.0	51.7	63.5	77.1	95.3	122.5	145.2	176.9	208.7	263.1	309.4	358.4	404.6	436.4
		ND	2.3	3.6	5.0	8.3	13.4	17.2	22.7	29.0	35.4	43.5	55.3	68.0	82.6	101.6	136.1	163.3	196.9	235.9	281.3	335.7	367.4	408.3
Carrier frequency variation *5)		VLD	$0.5 \sim 10.0 \mathrm{kHz}$														$0.5 \sim 8.0 \mathrm{kHz}$							
		LD	$0.5 \sim 12.0 \mathrm{kHz}$														$0.5 \sim 8.0 \mathrm{kHz}$							
		ND	$0.5 \sim 16.0 \mathrm{kHz}$														$0.5 \sim 10.0 \mathrm{kHz}$							
Starting torque *6)			200\%/0.3Hz														180\%/0.3Hz							
	Regenerative		Internal BRD circuit (external discharge resistor value)												*8)		Ext. regen. braking unit							
	$\begin{array}{\|c\|} \hline \text { Minimum } \\ \text { resistance value }(\Omega) \\ \hline \end{array}$		100	100	100	70	70	35	35	24	24	20	15	15	10	10	-							
	H (height)(mm)		255	255	255	255	260	260	260	390	390	390	540	550	550	550	700	700	740	740	995	995	995	995
	W(width)(mm)		150	150	150	150	210	210	210	245	245	245	300	390	390	390	390	390	480	480	480	680	680	680
	$D($ Depth $)(\mathrm{mm})$		140	140	140	140	170	170	170	190	190	190	195	250	250	250	270	270	270	270	370	370	370	370
Protective structure			IP20 - UL Open Type																					
Aprox.weight (kg)			3	3	3	3	6	6	6	8.5	8.5	8.5	22	31	31	31	41	41	53	53	95	125	125	125

*1) Some models require current derating depending on the carrier frequency setting and ambient temperature. For details, please refer to "20.4 Current Delating Table" of P1 user 's guide.
$\left.{ }^{*} 2\right)$ The rated input current is the value when the drive is operated in the rated output current. The value of the impedance at the supply side changes due to the wiring, breaker, input reactor, etc. In addition, the input current on the specification nameplate is a UL-certified current
*3) Make sure the following for Low Voltage Directive (LVD) compliant.

- Pollution degree 2, - Overvoltage category 3 (for 380~460Vac Input supply), - Overvoltage category 2 (for over 460Vac Input supply)
*4) The power supply capacity is the value of the rated output current at 440 V . The value of the impedance at the supply side changes due to the wiring, breaker, input reactor, etc.
*5) The setting range of carrier frequency [bb101] / [bb201] is limited according to the [Ub-03] setting(load type selection).
It is recommended to set the carrier frequency settings [bb101]/[bb201] equal or greater than the (maximum output frequency $\times 10$ ) Hz . For induction motor $I M$, it is recomended to set the carrier frequency to 2 kHz or more except $\mathrm{V} / \mathrm{f}$ control. For synchronous motor (SM)/Permanent magnet motor (PMM), it is recomended to set the carrier frequency to 8 kHz or more.
*6)The value is specified for the Hitachi standard motor controlled by the sensorless vector control when ND rating. Torque characteristics may vary by the control system and the use of the motor.
*7) The key height of keypad are exclued from dimensions. When an option is connected, the depth is increased. Refer to the each optional instruction
*8) Usually an external regenerative braking unit is required. However, with an optional built -in chopper braking ciruit and external discharge resistor can eliminate a external regenerative unit. The built-in chopper braking circuit is offered by order. In order to purchase, contact to the nearest sales office.
*9) The rated input current and power supply capacity of $\mathrm{P} 1-03720-\mathrm{H}(\mathrm{P} 1-1600 \mathrm{H})$ and more models are described under the condition that the power factor improving reactor is installed.


### 7.3 Common specifications


*1) Output frequency range will depend on the motor control method and the motor used. Consult the motor manufacturer for the maximum allowable frequency of the motor when operating beyond 60 Hz .
*2) In case of the control mode is changed and the motor constant is not set appropriately, the desired starting torque cannot be obtained and also exists the possibility of tripping.
${ }^{*} 3$ ) Regarding the speed range regulation of motor, the variable range depends on the client system and the environment in which the motor is used. Please contact Hitachi inverter distributers for more information.
*4) Both the input power and output power are reference values, which are not appropriate for use in calculation of efficiency values, etc. To obtain an accurate value, use an external device.
*5) If the IGBT error [EO30] occurs by the protective function, it may have happened by the short-circuit protection, but also can occur if the IGBT is damaged. Depending on the operation status of the inverter, instead of the IGBT error, the overcurrent error [E001] may also occur.
*6) At factory setting, the maximum output frequency for analog input signal Ai1/Ai2 is adjusted to 9.8 V for voltage input and 19.6 mA for current input. In order to adjust the specification use analog start/end function.

### 7.3 Common specifications (continue)


*7) The threshold for signal output varies depending on the motor to be combined with the inverter, parameter adjustment, etc.
*8) The analog voltage and analog current monitor are estimated outputs of the analog meter connection. Maximum output value might deviate slightly from 10 V or 20 mA by variation of the analog output circuit. If you want to change the characteristics, adjust the Ao1 and Ao2 adjustment functions. There are some monitor data that cannot be output.
${ }^{*} 9$ ) In order to enable the EMC filter, connect to the neutral grounding supply. Otherwise, the leakage current may increase.
*10) Storage temperature is the temperature during transport.
*11) In accordance with the test methods of JIS C 60068-2-6:2010(IEC 60068-2-6:2007).
${ }^{*} 12$ ) In case of utilization at an altitude of 1000 m or more, take into account that the atmospheric pressure is reduced by $1 \%$ for every 100 m up. Apply $1 \%$ derating from the rated current by increasing every 100 m , and conduct an evaluation test. When using above 2500 m ambient, please contact Hitachi Inverter distributer.
*13) Insulation distance is in accordance with the UL and CE standards.
*14) Use the 400 V class inverter at an input voltage of 500 VAC or below. If input voltage exceeds 500 VAC due to fluctuation of power, use the inverter at $40^{\circ} \mathrm{C}$ or lower ambient temperature.
$\left.{ }^{*} 15\right)$ Modbus ${ }^{\circledR}$ is a registered trademark of Schneider Automation Inc.
EtherCAT ${ }^{\oplus}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
PROFIBUS ${ }^{\circledR}$ and PROFINET ${ }^{\circledR}$ is registered trademark of PROFIBUS Nutzerorganisation e.V. (PNO).
CC-Link ${ }^{\circledR}$ is trade names of Mitsubishi Electric Co. DeviceNet ${ }^{\circledR}$ is the trademark of Open DeviceNet Vendor Association, Inc.

### 7.4 Current derating

For using with carrier frequency ober 2.1 kHz , or when changing load ratings to LD/VLD, refer to P1 user's guide section "20.4 Current derating table".

## SJ－P1 Ver．2．01 Supplement

This supplement contains the explanation of functions added to the Ver．2．01 and supplementary cautions when using this version．

【1】Added functions
The following functions were added to the Ver．2．01．

NO．	Function	Ver．2．01	Ver．2．00 or lower
1	Operation panel VOP display language	Can be selected from one of these 7 languages   －English，   －Japanese（日本語），   －French（Français），   －Spanish（Español），   －Turkish（Türkçe），   －Polish（ję zyk polski），   －Czech（český jazyk）   ［VOP Ver2．01］	Can be selected from one of these 2 languages   －English，   －Japanese（日本語），   ［VOP Ver2．00 or lower］

Setting method $\cdot \cdots$ select［Menu］，［03 System setting］then［01 Language］．
（In case the［01 controller］option is selected from the［01 Language］option list，the language will be set to Japanese if the SJ－P1 model number ends in－LFF or HFF，or it will be set to English if the SJ－P1 model number ends in－HFEF，－LFUF or HFUF．）

【2】Supplementary cautions
The following modifications were made on the Ver．2．01 based on the Ver．2．00．If settings related to the modifications described below were being used on the Ver． 2.00 or lower，then is necessary to reexamine the configuration of these settings．

No．	Content	Item	Ver．2．01	Ver．2．00 or lower
1	Output range modification of the Ao1，Ao2 analog output terminals when used as current outputs．${ }^{* 1}$	Output current range ${ }^{* 2}$	$0 \sim 20 \mathrm{~mA}$	4～20mA
2	Output logic modification of the Speed deviation over（DSE）output signal．${ }^{* 3}$   （bb－83：Speed deviation error detection level）	While stopped	OFF	OFF
		Operating at（bb－83） level or less	OFF	ON
		Operating at more than（bb－83）level	ON	OFF

＊1）Please reexamine the setting of the bias adjustment $\mathrm{Cd}-23 / \mathrm{Cd}-33$ and the gain adjustment Cd－24／Cd－34．
＊2）Assuming Cd－23／Cd－33＝0．0\％and Cd－24／Cd－34＝100．0\％．
＊3）If the same specification as the Ver． 2.00 is required，then configure the logical calculation function （CC－40～CC－60）to calculate the XOR of the Speed deviation over（DSE）and the Running（RUN）output signals，then use the logical operation result（LOG）output signal as the Speed deviation over（DSE） output signal．In this case，the speed deviation error detection time setting should be done by using the output terminal off－delay time parameters（CC－21，23，25，27，29，31，33）．（In this case the speed deviation error detection time parameter（bb－84）must be set to 0.0 s ）

## SJ－P1 Ver．2．02 Supplement

This supplement contains the explanation of the updates implemented in the Ver．2．02．
【1】 Operation panel VOP language support expansion（10 languages support）

Ver．2．02［VOP Ver．2．02］	Ver．2．01［VOP Ver．2．01］
The language can be selected from the 10 options shown below   －English   －Japanese（日本語）   －French（Français）   －Spanish（Español）   －Turkish（Türkçe）   －Polish（ję zyk polski）   －Czech（český jazyk）   －German（Deutsch）※New addition   －Italian（Italiano）※New addition   －Dutch（Nederlands）※New addition	The language can be selected from the 7 options shown below   －English   －Japanese（日本語）   －French（Français）   －Spanish（Español）   －Turkish（Türkçe）   －Polish（ję zyk polski）   －Czech（český jazyk）

Setting method $\cdots$ select［Menu］$\rightarrow$［07 System setting］$\rightarrow$［01 Language］then choose one of the options shown above．
In case the［01 Controller］option is selected from the［01 Language］option list，the language will be set to Japanese if the SJ－P1 model number ends in－LFF or HFF，or it will be set to English if the SJ－P1 model number ends in－HFEF，－LFUF or HFUF．

## 【2】 Operation panel VOP menu addition

4 types of function specific parameter menus were added．

Ver．2．02	［VOP Ver．2．02］	Ver．2．01
［VOP Ver．2．01］		
The following 7 menus are available	The following 3 menus are available	
.01 Scroll mode		
.02 User mode	※New addition	．01 Scroll mode
.03 Short menu	※New addition	.03 System setting
.04 Compare mode	※New addition	
.05 Motor setup	※New addition	
.06 Read／Write		
.07 System setting		

※The operation method and details of the 02 to 05 menus are explained in the section 5

## 【3】 Parameter addition and specification changes

The addition of new parameters and specification changes of existent parameters were implemented as shown in the tables below．
－New parameter addition

Code	Name	Data range	Initial Value	Details
HC115	Torque conversion method selection，1st－motor	00（Torque）／01（Current）	00	Torque reference percentage value selection
HC215	Torque conversion method selection，2nd－motor			
oH－40	DeviceNet node address （MAC ID）	0 to 63	0	DeviceNet option designated parameters （These are designed for a future use，please do not change their settings）
oH－41	DeviceNet assembly instance number selection	00（Instance 20，70）／01（Instance 21，71）／   02（Instance 100，150）／03（Instance 101，151）／   04（Instance 101，153）／05（Instance 110，111）／   06（Instance 123，173）／07（Instance 139，159）	00	
oH－42	DeviceNet speed unit selection	$00(\mathrm{~Hz}) / 01\left(\mathrm{~min}^{-1}\right)$	01	
oH－44	DeviceNet flexible Gr． Format selection	00（Gr．A）／01（Gr．B）／02（Gr．C）	00	
oH－45	DeviceNet idle mode action selection	00（Trip）／01（Decel－Trip）／02（Ignore）／ 03（Free run stop）／04（Decel stop）／	00	

－Parameter specification changes

Code	Name	Ver．2．02	Ver．2．01
$\mathrm{AH}-80$	PID soft start time	Data range $0.00 \sim 600.00(\mathrm{sec})$	Data range $0.00 \sim 100.00(\mathrm{sec})$
$\mathrm{CC}-06$	Relay output terminal［16］function	Initial value $00(\mathrm{no})$	Initial value 40（ZS）
$\mathrm{Cd}-34$	［Ao2］Gain adjustment	Initial value $80.0(\%)$	Initial value 100．0（\％）
Hb 146	Eco drive response adjustment，1st－motor	No unit display	［\％］displayed as unit
Hb246	Eco drive response adjustment，2nd－motor		

## 【4】 Positioning Speed limit specification change

The speed limit setting for each positioning operation was changed as shown in the table below．

Positioning operation	Ver．2．02	Ver．2．01 Speed limit
Positioning of the orientation function	［AE－12］Speed reference of home   search function＊1）	［AE－66］Speed limit in APR control
Positioning of the homing function	［AE－72］Low－speed homing speed   setting $\left.{ }^{*} 1\right)$	［AE－66］Speed limit in APR control

${ }^{*} 1$ ）The behavior is the same as the SJ700 inverter

## 【5】 Explanation of the new added menus

## （1）User mode

－The user mode will display user－registered parameters only．This will allow to quickly access the parameters that are frequently used or are essential to the user．
－Select the＂02 User mode＂option from the menu screen，then press the $\operatorname{SEL}(\mathrm{O})$ to display the main user mode screen．
［Main user mode screen］


This user mode screen displays the parameters that have been previously registered on the user parameters［UA－31］to ［UA－62］in that order．（ $[----$－ will be displayed in case there is no registered parameter）

## ※User mode parameter registration

－By pressing the RIGHT（ $D$ ）button，the screen will move to the parameter registration screen where the parameters UA－31 to UA－64 are displayed．

User mode screen（parameter registration screen）

STOP		UM	L04
USer mode			
UA－31 User Parameter 1			
			FA－01
UA－32 User Parameter 2			
			dA－02
UA－33 User Parameter 3			
			no
Menu	ofw	46．49Hz	NextPage

－Use the UP／DOWN $(\Delta \nabla)$ or the F2 key（Next page）to select the required user parameter then press the $\operatorname{SEL}(0)$ to display the parameter setting screen，then search and register the required parameter．
－Registering a non－existent parameter will release the registration in that user parameter（「＿＿＿no」 will be shown instead）．

## （2）Short menu

－The short menu displays regularly used parameters for the inverter operation allowing the user to configure the inverter more quickly and efficiently．
－Select the＂03 Short menu＂option from the menu screen，then press the $\operatorname{SEL}(\mathrm{O})$ to display the short menu screen．
［Short menu Screen］

－The short menu will display the parameters shown in the table below．（These are pre－defined parameters for the short menu）
※Short menu pre－defined parameters

No	Code	Name
1	Ub－03	Load type selection
2	Hb102	Async．Motor capacity setting，1st－motor
3	Hb103	Async．Motor number of poles setting，1st－motor
4	Hb104	Async．Motor base frequency setting，1st－motor
5	Hb105	Async．Motor maximum frequency setting， 1st－motor
6	Hb106	Async．Motor rated voltage，1st－motor
7	Hb108	Async．Motor rated current，1st－motor
8	bC110	Electronic thermal level setting，1st－motor
9	AA121	Control mode selection，1st－motor
10	bb101	Carrier frequency setting，1st－motor
11	AA101	Main speed input source selection，1st－motor
12	AA111	Run－command input source selection，1st－motor
13	AC120	Acceleration time setting 1，1st－motor
14	AC122	Deceleration time setting 1，1st－motor
15	AA115	STOP mode selection，1st－motor
16	Ab110	Multispeed－0 setting，1st－motor
17	Ab－11	Multispeed－1 setting
18	$\mathrm{Ab}-12$	Multispeed－2 setting
19	Ab－13	Multispeed－3 setting
20	bA101	Upper frequency limit source selection，1st－motor
21	bA102	Upper frequency limit，1st－motor
22	bA103	Lower frequency limit，1st－motor
23	Cb－40	Thermistor type selection
24	CC－07	Relay output terminal［AL］function
25	CC－06	Relay output terminal［16］function
26	bA－61	Dynamic brake activation selection
27	bA－60	Dynamic brake use ratio
28	bA－63	Dynamic brake resistor value

※The number in the No．column represents the short menu display order

## (3) Compare mode

-The compare mode will only display the parameters that have been modified from its initial settings, allowing the user to quickly verify or modify the implemented changes.
-Select the "04 Compare mode" option from the menu screen, then press the $\operatorname{SEL}(\mathrm{O})$ to display the compare mode screen.

Compare mode screen

-The compare mode will not display the parameters that have not been modified from their initial settings. Additionally this mode will not display any monitor parameters (Groups d and F).

## (4) Motor setup menu

-The motor setup menu displays the parameters that are related to a basic motor setting, allowing the user to quickly configure the inverter to operate a motor.
-Select the "05 Motor setup" option from the menu screen, then press the $\operatorname{SEL}(0)$ to display the motor setup screen.

Motor setup screen

-The motor setup menu will display the parameters shown in the table below. (These are pre-defined parameters for the motor setup menu)
※Motor setup pre-defined parameters

No	Code	Name	No	Code	
1	dC-45	IM/SM monitor	21	Hd104	Sync. Motor base frequency setting, 1st-motor
2	HA-01	Auto-tuning selection	22	Hd105	Sync. Motor maximum frequency setting, 1st-motor
3	HA-02	Auto-tuning RUN command source selection	23	Hd106	Sync. Motor rated voltage, 1st-motor
4	HA-03	Online auto-tuning selection	24	Hd108	Sync. Motor rated current, 1st-motor
5	Hb102	Async. Motor capacity setting, 1st-motor	25	Hd110	Sync. Motor constant R, 1st-motor
6	Hb103	Async. Motor number of poles setting, 1st-motor	26	Hd112	Sync. Motor constant Ld, 1st-motor
7	Hb104	Async. Motor base frequency setting, 1st-motor	27	Hd114	Sync. Motor constant Lq, 1st-motor
8	Hb105	Async. Motor maximum frequency setting, 1st-motor	28	Hd116	Sync. Motor constant Ke, 1st-motor
9	Hb106	Async. Motor rated voltage, 1st-motor	29	Hd118	Sync. Motor constant J, 1st-motor
10	Hb108	Async. Motor rated current, 1st-motor	30	Hd130	Minimum frequency adjustment for Sync.M,   1st-motor   11
Hb110	Async. Motor constant R1, 1st-motor	31	Hd131	No-Load current for Sync. M., 1st-motor	
12	Hb112	Async. Motor constant R2, 1st-motor	32	Hd132	Starting method for Sync. M., 1st-motor
13	Hb114	Async. Motor constant L, 1st-motor	33	Hd133	IMPE 0V wait number for Sync. M., 1st-motor
14	Hb116	Async. Motor constant I0, 1st-motor	34	Hd134	IMPE detect wait number for Sync. M., 1st-motor
15	Hb118	Async. Motor constant J, 1st-motor	35	Hd135	IMPE detect number for Sync. M., 1st-motor
16	HA110	Stabilization constant, 1st-motor	36	Hd136	IMPE voltage gain for Sync.M, 1st-motor
17	HA115	Speed response, 1st-motor	37	Hd137	IMPE Mg-pole position offset, 1st-motor
18	Hb180	Ouput voltage gain, 1st-motor			
19	Hd102	Sync. Motor capacity setting, 1st motor			
20	Hd103	Sync. Motor number of poles setting, 1st-motor			

※The number in the No. column represents the motor setup menu display order

## Quick start

Thoroughly read "Chapter 1 Safety
Instructions" and "Chapter 2 Installation and
Wiring" in the P1 Basic Guide for installation
and wiring of the inverter.

How to read the display screen (6)

<a>24V supply state, $<b>$ SET function,
<c> Parameter display restrictions, <d> Display screen No., <e> Functional safety operation, <f> Command control mode, $\langle\mathrm{g}>$ EzSQ function operation, <h> Special status indication
Call 1(800)985-6929 for Sales

Although there are many functions on the inverter, you do not need to use all the functions. If you need to set functions in more detail, refer to this P1 Basic Guide and P1 User's Guide.

Run command setting from keypad


## INDEX

## A

Absolute position control
4-18, 4-38

ACO,AC1,AC2,AC3 4-41
Accel/Decel time dwell ................................................4-21
Acceleration/deceleration curve selection .....................4-16
Acceleration/deceleration time setting..........................4-16
Accumulated RUN time.........................................4-11,4-44
Accumulated PowerON time..................................4-11,4-44
Accumulated input power....................................4-10, 4-59
Accumulated output power .................................4-10, 4-59
Action when an error occurs ........................................... 5-1
Active frequency matching ..........................................4-32
ADD .....................................................................4-13, 4-36
AHD .............................................................................4-36
Ai1Dc,Ai2Dc,Ai3Dc,Ai4Dc,Ai5Dc,Ai6Dc, .........................4-44
AL ........................................................................2-23, 4-40
Analog input adjustment.....................................4-39, 4-53
Analog input/output ....................................................2-24
analog input/output adjustment......................................3-1
Analog output terminal adjustment......................4-42, 4-54
Applicable circuit breaker............................................. 2-12
Applicable peripheral equipment..................................... 2-8
APR..............................................................................4-19
ASR ..............................................................................4-46
ASR gain mapping ......................................................... 4-46
ASR gain switching ......................................................4-46
ATR ..............................................................................4-37
Auto tuning .................................................................4-46
Automatic carrier reduction.........................................4-31
Automatic error reset...................................................4-31
Automatic torque boost .............................................4-50
AVR(Automatic output Voltage Regulation)...................4-30

## B

Basic parameters for Induction motor ........................... 4-47
battery...........................................................4-7, 4-59, 5-2
BER ....................................................................4-20, 4-41
BOK ............................................................4-20, 4-36, 5-2
Brake control................................................................4-20
BRD .....................................................................4-10, 4-30
BRK....................................................................4-20, 4-41

## C

capacitor life warning............................................4-40, 5-3
Carrier frequency ........................................................4-31
CAS....................................................................4-37, 4-46
CAUTION ....................................................................... 1-1
CF1,CF2,CF3,CF4..................................................4-15, 4-36
Checking method for inverter/converter .........................6-4
CLV .....................................................................4-14, 4-50
CM1............................................................................. 2-25
COK .....................................................................4-20, 4-37
Commercial power supply bypass.................................4-58
commercial supply change...................................4-32, 4-36
Compliance to European Directive (CE) ........................... 1-5
CON....................................................................4-20, 4-41
Confirming the status.....................................................5-3
constant torque...........................................................4-14
Contact Information ....................................................... S-3
control circuit terminal................................................... 2-202-20
control gain change ..... 4-37
control mode ..... 4-14
Cooling fin overheat warning ..... 4-44
Cooling-fan ..... 4-31
copy ..... 4-7, 4-59
Copying data ..... 4-7
CP1,CP2,CP3,CP4 ..... 4-18, 4-37
CS ..... 4-32, 4-36
Current derating ..... 7-4

## D

DANGER ........................................................................ 1-1
data comparison display ..... 4-59
DB ..... 4-19, 4-36
DC braking ..... 4-19
DC bus voltage ..... 4-10, 4-30, 4-58, 6-4
Deceleration / stop at power loss ..... 4-30
derating ..... 7-4
Description of monitor ..... 4-10
deviation in position control ..... 4-33
deviation in speed control ..... 4-33
Dimension Drawing ..... 2-5
DISP ..... 4-7, 4-37
Display restriction selection ..... 4-59
DSE. ..... 4-33, 4-41
DTR ..... 4-37, 4-60
Dynamic braking ..... 4-30
E
Eco Drive. ..... 4-48
ECOM ..... 4-37, 4-45
electromagnetic sound ..... 4-31
Electronic gear ..... 4-18
Electronic thermal ..... 4-10, 4-33
Electronic thermal warning ..... 4-43
EMBP ..... 4-41, 4-58
EMC Directive ..... 1-5
Emergency-force drive ..... 4-58
EMF ..... 4-37, 4-58
EMFC. ..... 4-41, 4-58
encoder ..... 4-38, 4-52
EXT. ..... 2-22, 4-36, 5-1
external fault ..... 2-22, 4-36
external thermistor ..... 2-24
EzCOM ..... 4-45
EzSQ ..... 4-61
F
F/R ..... 3-4, 4-36
FA1 ..... 2-23, 4-40
FA2,FA3,FA4,FA5 ..... 4-40, 4-43
FAQ/Troubleshooting ..... 5-1
FBV. ..... 4-24, 4-41
FBV2 ..... 4-26, 4-41
FBV3 ..... 4-27, 4-41
FBV4 ..... 4-28, 4-41
FDN ..... 4-36, 4-38
FM output ..... 2-25, 4-42
FOC ..... 4-37
F-OP ..... 4-36, 4-38
FOT. ..... 4-18, 4-37


## G

Ground fault detection..................................................4-32

## H

heat sink................................................. 2-3, 4-40, 4-44	
HLD.............................................................4-21, 4-37	
Home search function............................................4-18	
Homing................................................................4-19	
w to use th	

## I

Individual Accel/Decel time for Multispeed............4-15,4-17
Induction motor constants...............................................4-48
Initialize........................................................................... 4-60
Input method for Accel/Decel time................................. 4-15
Input phase loss ............................................................... 4-33
Input terminal chatter prevention ........................... 3-6, 4-35
Input terminal function list .............................................4-36
Input/output voltage, current and power measurement
methods............................................................................6-6
Inspection and Maintenance..............................................6-1
Install the Inverter ............................................................. 2-2
Insulation resistance test .................................................. 6-3
intelligent input terminals...................................... 2-22, 4-35
intelligent output terminals .................................... 2-23, 4-39
IP ...................................................................................4-40
IPS ..........................................................................4-30, 4-40
IRDY......................................................................... 2-23, 4-40
IVMS setting ................................................................... 4-51

## J

J51 connector.................................................................... 2-9
JG ...............................................................2-22, 4-21, 4-36
Jogging ............................................................................4-21
jump frequency(resonant frequency avoidance) ............ 4-21

## K

Keypad communication lost............................................ 4-59
Keypad display mode .......................................................4-59
Keypad keys setting .......................................................4-14
KHC..........................................................................4-36, 4-59

## L

LAC. ..... 4-37
LAD ..... 4-37
Large monitor ..... 4-4
LBK. ..... 4-41, 4-59
Lifespan alarm output .....  6-5
LOC,LOC2 ..... 4-43
LOG1,LOG2,LOG3,LOG4,LOG5,LOG6,LOG7 ..... 4-41, 4-42
Logic output terminals setting ..... 4-42
low battery warning ..... 4-59
Low-current detection ..... 4-43
Lower frequency limit. ..... 4-29

## M

Magnetic pole position estimation ..... 4-51
main circuit terminal block ..... 2-9, 2-15
Main speed ..... 4-12, 4-13
major failure ..... 4-40, 5-1, 5-2
Manual torque boost ..... 4-48
MI1,MI2,MI3,MI4,MI5,MI6,MI7,MI8,MI9,MI10,MI11.... 4-37
Minimum frequency ..... 4-48, 4-51
MJA ..... 4-40, 5-1, 5-2
MO1,MO2,MO3,MO4,MO5,MO6,MO7 ..... 4-41
Modbus communication ..... 2-26, 4-45
monitor mode. .....  4-2
Monitor mode (d code) ..... 4-10
MOP ..... 4-39, 4-60
Motor control adjustment gain. ..... 4-50
Motor gear ratio ..... 4-38, 4-52
Motor stabilization (Hunting) ..... 4-46
Multi-speed command ..... 4-15
Multistage input determination time ..... 4-35
multistage position ..... 4-18, 4-37
N
NDc ..... 4-41, 4-45
NO/NC setting. ..... 4-35, 4-39
0
OD. ..... 4-24, 4-41
OD2 ..... 4-26, 4-41
OD3 ..... 4-27, 4-41
OD4 ..... 4-28, 4-41
OHF. ..... 4-40, 4-44
OKHC. ..... 4-36, 4-59
OL,OL2 ..... 4-41, 4-43
OLR ..... 4-29, 4-36
Online auto-tuning ..... 4-46
ONT ..... 4-40, 4-44
OPO. ..... 4-40
Option parameter display selection ..... 4-59
Optional cassette error ..... 4-52
ORG. ..... 4-19, 4-37
ORL ..... 4-19, 4-37
ORT ..... 4-18, 4-37
ота ..... 4-40, 4-43
Output phase loss. ..... 4-33
Output terminal function list ..... 4-40
Output terminals stabilization ..... 3-6, 4-40
Output voltage adjustment. ..... 4-49
Overcurrent level ..... 4-32
Overcurrent suppression ..... 4-29
Over-excitation ..... 4-30
Overload detection ..... 4-43
Overload restriction ..... 4-29
Over-speed detection ..... 4-33
Over-torque signal ..... 4-43
Overvoltage suppression ..... 4-30
Overvoltage warning ..... 4-32
ovs. ..... 4-32,4-41
P
P1-AG Analog Input/Output Option ..... S-4, 4-53, 4-54
P1-CCL CC-Link communication Option ..... S-4, 4-52
P1-DN DeviceNet Communication Option ..... s-4, 4-55
P1-EN Ethernet communication Option ..... S-4, 4-54, 4-57
P1-FB Encoder Feedback Option S-4, 4-52, 4-53
P1-FS Functional Safety Option ..... S-4, 4-53
P1-PB PROFIBUS Communication Option ..... S-4, 4-55
P1-PN PROFINET Communication Option ..... S-4, 4-55
Parameter arrangement ..... 4-13
Parameter mode (A code) ..... 4-13
Parameter mode (b code) ..... 4-29
Parameter mode (C code) ..... 4-35
Parameter mode (H code) ..... 4-46
Parameter mode (o code) ..... 4-52
Parameter mode (P code) ..... 4-58
Parameter mode (U code) ..... 4-59
Parameter naming (Nomenclature) ..... 4-13
Parameter setting screen ..... 4-3
Password ..... 4-59
PCC ..... 4-37, 4-38
PCLR ..... 4-33, 4-37
PCMP ..... 4-38, 4-41
PDD ..... 4-18, 4-41
PDN ..... 4-18, 4-37
Permanent Magnet Sync. Motor(SM/PMM) basic parameters ..... 4-51
PID sleep function ..... 4-25
PID soft start function ..... 4-24
PID1 ..... 4-22, 4-36
PID1 function ..... 4-22
PID2 ..... 4-26, 4-36
PID2 function ..... 4-26
PID3 ..... 4-27, 4-36
PID3 function ..... 4-27
PID4 ..... 4-28, 4-36
PID4 function ..... 4-28
PIDC. ..... 4-23, 4-36
PIDC2 ..... 4-26, 4-36
PIDC3 ..... 4-27, 4-36
PIDC4 ..... 4-28, 4-36
PIO1 ..... 4-25, 4-36
PIO2. ..... 4-25, 4-36
PLA 4-18, 4-37, 4-38
PLB 4-18, 4-37, 4-38
PLZ. ..... 4-18, 4-37
POK ..... 4-18, 4-41
Position control ..... 4-18
position saving ..... 4-18
Positioning operation adjustment ..... 4-19
Possible errors and solutions ..... 5-5
PPI ..... 4-37, 4-46
Pre-set position ..... 4-19
PRG ..... 4-37, 4-614-23, 4-36
${ }^{\text {PR }} \mathrm{C}$
Product Warranty ..... S-2
PSET ..... 4-19, 4-37
Pulse train input. ..... $4-10,4-38,4-53$
Pulse train input counter ..... 4-38
PUP ..... 4-18, 4-37
R
Read/Write function ..... 4-7, 4-59
reduced torque ..... 4-14
REF. ..... 3-2, 4-40
REN ..... 4-37, 5-3
Reset operation after error ..... 4-31
Residual risk checklist ..... 2-27
Resonant frequency avoidance ..... 4-21
Restart mode ..... 4-32
Restart mode after FRS release. ..... 4-14, 4-32
Restart mode after RS release ..... 4-32
Retry/trip setting in error event ..... 4-31
Reverse run protection ..... 4-50
RNT ..... 4-40, 4-44
ROT ..... 4-18, 4-37
RS. ..... $4-32,4-36,4-38$
RUN. ..... 2-23, 4-40
RUN command ..... 4-14
RUN command direction restriction ..... 4-14
RV ..... 3-3,4-14,4-36
RVR ..... 4-40
S
Safety Instructions ..... 1-1
SCHG ..... 4-13, 4-36
scroll mode ..... 4-8
Secondary resistor compensation ..... 4-50
sensorless vector contro ..... 4-14, 4-50
Serial communication ..... 2-26
Servo lock ..... 4-19,4-20,4-37
SET ..... 4-13, 4-36
Set the motor data ..... 3-1
SETM. ..... 4-40, 5-4
SF1,SF2,SF3,SF4,SF5,SF6,SF7 ..... 4-15, 4-36
SFT ..... 4-36, 4-59
Simulation mode ..... 4-58
SLEP ..... 4-25, 4-36
Slip compensation ..... 4-49, 4-50
SLV ..... 4-14, 4-50
Smoothing capacitor life span curve ..... 6-5
Software lock ..... 4-59
SON ..... 4-37
SPD. ..... 4-18, 4-37
Specification label ..... 2-1
Specifications ..... 7-1
Speed limitation for torque control ..... 4-17
Speed response ..... 4-46
speed/position switching ..... 4-18, 4-37
Sprinkle carrier pattern ..... 4-31
SSE ..... 4-24, 4-41
STA ..... 3-4, 4-36
STAT ..... 4-14, 4-18, 4-37
STOP mode ..... 4-14
STP ..... 3-4, 4-36
Sub speed ..... 4-13
SVC1,SVC2,SVC3,SVC4 ..... 4-22, 4-36
System configuration of the keypad ..... 4-7
hitachiacdrive.com
T
TBS ..... 4-17, 4-37
TCH ..... 4-18, 4-37
Teach-in function ..... 4-18
Temporary frequency addition ..... 4-13
test run ..... 4-5
THC ..... 4-40, 4-43
Thermistor error. ..... 4-33, 4-39
THM ..... 4-40, 4-43
TL. ..... 4-29, 4-36
Torque bias ..... 4-17
Torque control function ..... 4-17
Torque limit ..... 4-29
torque monitor ..... 4-10
Torque reference value conversion method. ..... 4-50
TRA ..... 4-41,4-60
Trace function ..... 4-60
Trip history screen ..... 4-4
TRQ ..... 4-29, 4-40
TRQ1,TRQ2 ..... 4-29, 4-36
U
UDC ..... 4-36, 4-38
UL standards ..... 1-7
unattended start protection 2-22, 4-36
Unit selection 4-22, 4-26, 4-27, 4-28
Unit table ..... 4-22, 4-26, 4-27, 4-28, 4-62
USB node setting ..... 4-45
User-parameter setting ..... 4-59
UV ..... 4-40
v
Variable mode monitor (F code) ..... 4-12
Vector control start adjustment ..... 4-50
vector control with encoder ..... 4-14, 4-38,4-50
W
WAC .........................................................................4-40, 5-3
WAKE ..... 4-25, 4-36
WARNING ..... 1-1
WCAi1,WCAi2,WCAi3,WCAi4,WCAi5,WCAi6 ..... 4-41, 4-44
WFT ..... 4-44, 4-54
wire size ..... 2-10
Wiring of the control circuit ..... 2-20

## Z

$\qquad$
0 to 9(Number)
OHz speed detection ..... 4-44
OHz-SLV ..... 4-14, 4-50
24V power supply ..... 2-26
2 CH ..... 4-16, 4-36
2nd-motor parameter display selection ..... 4-59
2-stage Accel/Decel time change ..... 4-16
3 lines monitor ..... 4-4
3WIRE termina ..... 3-4


[^0]:    \& If export to the U.S. or Canada or compliance with UL/CUL standards is required, wires and breakers described in UL / cUL should be used. For details, see "1.5 Compliance to UL standards".
    $\triangleleft$ Device model name on above table shows example selection. The device selection should be made in base on rated current, short circuit current capability and accordance to the local electrical legislation.

    - Applicable motor capacity is based on Hitachi $400 \mathrm{VAC}, 60 \mathrm{~Hz}, 4$ pole IE 3 motor.
    $\diamond$ Select AC-3 class magnetic contactor for inverter output for application which has an emergency stop or commercial power line operation.
    $\diamond$ When selecting oversize inverter capacity compare to motor rating, select according to the inverter capacity
    > The inverter of 160 kW ( $\mathrm{P} 1-1600 \mathrm{H}$ ) or more, be sure to use a reactor for power factor correction. (Input side AC reactor or DC reactor, usually DC reactor)

[^1]:    s Switch the short circuit connector to enable/disable the EMC filter.

[^2]:    - Refer to the Option User's Guide for more details.

[^3]:    - By the self-diagnostic, it is possible to output an alarm in regards of the inverter own internal components lifespan when the lifespan is nearing to its end (Including the circuit board electrolytic capacitor and cooling-fan, and excluding the main circuit smoothing capacitor). Use this to get a reference for when the components should be replaced. Particularly, consult the lifespan diagnosis monitor [dC-16] and the output terminal function selection [CC-01] ~[CC-07]. It should be noted that the warning itself is based on the design lifespan, and thus, is not a guaranteed measurement. Depending on the environment, the operation conditions, etc. problems may arise, to avoid that, is recommended an early maintenance.

